有没有O(1/n)种算法?
或者其他小于O(1)的数?
有没有O(1/n)种算法?
或者其他小于O(1)的数?
当前回答
O(1/n)并不小于O(1)这基本上意味着你拥有的数据越多,算法运行得越快。假设你有一个数组,如果它小于10100个元素就填充它,如果多于10100个元素就什么都不做。这个当然不是O(1/n),而是O(-n):)太糟糕了,O大符号不允许负数。
其他回答
O(1/n)并不小于O(1)这基本上意味着你拥有的数据越多,算法运行得越快。假设你有一个数组,如果它小于10100个元素就填充它,如果多于10100个元素就什么都不做。这个当然不是O(1/n),而是O(-n):)太糟糕了,O大符号不允许负数。
如果根本不运行函数(NOOP)呢?或者使用固定值。这算吗?
我不懂数学,但这个概念似乎是寻找一个函数,需要更少的时间,你添加更多的输入?在这种情况下,怎么样:
def f( *args ):
if len(args)<1:
args[1] = 10
当添加可选的第二个参数时,此函数会更快,因为否则必须赋值它。我意识到这不是一个方程,但维基百科页面说大o通常也应用于计算系统。
那么这个呢:
void FindRandomInList(list l)
{
while(1)
{
int rand = Random.next();
if (l.contains(rand))
return;
}
}
随着列表大小的增加,程序的预期运行时间会减少。
我看到一个算法的上限是O(1/n):
由于程序外部的原因(可能是硬件的原因,也可能是处理器中的其他核心的原因),有大量的输入正在发生变化,你必须选择一个随机但有效的输入。
现在,如果它没有变化,你可以简单地列出一个项目列表,随机选择一个,然后得到O(1)次。然而,数据的动态性质使我们无法列出列表,您只能随机探测并测试探测的有效性。(请注意,从本质上讲,不能保证返回时答案仍然有效。这仍然是有用处的——比如游戏中的单位AI。它可以射击在扣动扳机时从视线中消失的目标。)
它的最差情况性能为无穷大,但平均情况性能随着数据空间的填满而下降。