有没有O(1/n)种算法?
或者其他小于O(1)的数?
有没有O(1/n)种算法?
或者其他小于O(1)的数?
当前回答
随着人口增长,哪些问题会变得更容易?一个答案是像bittorrent这样的东西,下载速度是节点数量的逆函数。与汽车加载越多速度越慢相反,像bittorrent这样的文件共享网络连接的节点越多速度就越快。
其他回答
从我之前学习的大O符号来看,即使你需要1步(比如检查一个变量,做一个赋值),那也是O(1)。
注意,O(1)和O(6)是一样的,因为“常数”并不重要。这就是为什么O(n)和O(3n)是一样的。
如果你需要1步,那就是O(1)。因为你的程序至少需要1步,所以算法的最小值是O(1)。除非我们不这样做,那么它是O(0),对吧?如果我们做任何操作,那么它就是O(1)这是它能达到的最小值。
(如果我们选择不这样做,那么它可能成为一个禅宗或道的问题……在编程领域,O(1)仍然是最小值)。
或者这样怎么样:
程序员:老板,我找到了一个在O(1)时间内完成的方法! 老板:没必要,今天早上我们就要破产了。 程序员:哦,那么它就变成了O(0)。
如果不管输入数据如何,答案都是一样的,那么你就有一个O(0)算法。
或者换句话说——在提交输入数据之前,答案就已经知道了 -这个功能可以优化-所以O(0)
我相信量子算法可以通过叠加“一次”进行多次计算……
我怀疑这是一个有用的答案。
这里有另一种方法来证明它:为了拥有一个函数,你必须调用这个函数,并且你必须返回一个答案。这需要固定的时间。即使余下的处理过程对较大的输入花费更少的时间,打印出答案(我们可以假设是单个位)至少需要常数时间。
大o符号表示算法与典型运行时不同的最坏情况。证明O(1/n)算法是O(1)算法很简单。根据定义, O(1/n)——> T(n) <= 1/n, for all n >= C > 0 O (1 / n)——> T (n) < = 1 / C,因为1 / n <所有n > = 1 / C = C O(1/n)——> O(1),因为大O符号忽略常数(即C的值无关紧要)