有没有O(1/n)种算法?

或者其他小于O(1)的数?


当前回答

这不可能。Big-O的定义是不大于不平等:

A(n) = O(B(n))
<=>
exists constants C and n0, C > 0, n0 > 0 such that
for all n > n0, A(n) <= C * B(n)

所以B(n)实际上是最大值,因此如果它随着n的增加而减少,估计不会改变。

其他回答

其余的大多数答案都将大o解释为专门关于算法的运行时间。但是因为问题没有提到它,我认为值得一提的是大o在数值分析中的另一个应用,关于误差。

Many algorithms can be O(h^p) or O(n^{-p}) depending on whether you're talking about step-size (h) or number of divisions (n). For example, in Euler's method, you look for an estimate of y(h) given that you know y(0) and dy/dx (the derivative of y). Your estimate of y(h) is more accurate the closer h is to 0. So in order to find y(x) for some arbitrary x, one takes the interval 0 to x, splits it up until n pieces, and runs Euler's method at each point, to get from y(0) to y(x/n) to y(2x/n), and so on.

欧拉方法是O(h)或O(1/n)算法,其中h通常被解释为步长n被解释为你划分一个区间的次数。

在实际数值分析应用中,由于浮点舍入误差,也可以有O(1/h)。你的间隔越小,某些算法的实现就会抵消得越多,丢失的有效数字就越多,因此在算法中传播的错误也就越多。

For Euler's method, if you are using floating points, use a small enough step and cancellation and you're adding a small number to a big number, leaving the big number unchanged. For algorithms that calculate the derivative through subtracting from each other two numbers from a function evaluated at two very close positions, approximating y'(x) with (y(x+h) - y(x) / h), in smooth functions y(x+h) gets close to y(x) resulting in large cancellation and an estimate for the derivative with fewer significant figures. This will in turn propagate to whatever algorithm you require the derivative for (e.g., a boundary value problem).

在数值分析中,近似算法在近似公差范围内应具有次常数的渐近复杂度。

class Function
{
    public double[] ApproximateSolution(double tolerance)
    {
        // if this isn't sub-constant on the parameter, it's rather useless
    }
}

我相信量子算法可以通过叠加“一次”进行多次计算……

我怀疑这是一个有用的答案。

我经常用O(1/n)来描述随着输入变大而变小的概率——例如,在log2(n)次投掷中,一枚均匀硬币背面朝上的概率是O(1/n)。

没有比O(1)小的数 大o符号表示算法的最大复杂度

如果一个算法的运行时间是n³+ n²+ n + 5那么它就是O(n³) 低次在这里根本不重要,因为n ->正无穷,n^2与n^3相比是无关的

同样地,当n -> Inf时,O(1/n)与O(1)相比是不相关的,因此3 + O(1/n)将与O(1)相同,从而使O(1)的计算复杂度最小