有没有O(1/n)种算法?

或者其他小于O(1)的数?


当前回答

如果解决方案存在,它可以在常数时间=立即准备和访问。例如,如果您知道排序查询是针对倒序的,则使用LIFO数据结构。然后,假设选择了适当的模型(LIFO),数据就已经排序了。

其他回答

在数值分析中,近似算法在近似公差范围内应具有次常数的渐近复杂度。

class Function
{
    public double[] ApproximateSolution(double tolerance)
    {
        // if this isn't sub-constant on the parameter, it's rather useless
    }
}

It may be possible to construct an algorithm that is O(1/n). One example would be a loop that iterates some multiple of f(n)-n times where f(n) is some function whose value is guaranteed to be greater than n and the limit of f(n)-n as n approaches infinity is zero. The calculation of f(n) would also need to be constant for all n. I do not know off hand what f(n) would look like or what application such an algorithm would have, in my opinion however such a function could exist but the resulting algorithm would have no purpose other than to prove the possibility of an algorithm with O(1/n).

我经常用O(1/n)来描述随着输入变大而变小的概率——例如,在log2(n)次投掷中,一枚均匀硬币背面朝上的概率是O(1/n)。

如果解决方案存在,它可以在常数时间=立即准备和访问。例如,如果您知道排序查询是针对倒序的,则使用LIFO数据结构。然后,假设选择了适当的模型(LIFO),数据就已经排序了。

从我之前学习的大O符号来看,即使你需要1步(比如检查一个变量,做一个赋值),那也是O(1)。

注意,O(1)和O(6)是一样的,因为“常数”并不重要。这就是为什么O(n)和O(3n)是一样的。

如果你需要1步,那就是O(1)。因为你的程序至少需要1步,所以算法的最小值是O(1)。除非我们不这样做,那么它是O(0),对吧?如果我们做任何操作,那么它就是O(1)这是它能达到的最小值。

(如果我们选择不这样做,那么它可能成为一个禅宗或道的问题……在编程领域,O(1)仍然是最小值)。

或者这样怎么样:

程序员:老板,我找到了一个在O(1)时间内完成的方法! 老板:没必要,今天早上我们就要破产了。 程序员:哦,那么它就变成了O(0)。