有没有O(1/n)种算法?
或者其他小于O(1)的数?
有没有O(1/n)种算法?
或者其他小于O(1)的数?
当前回答
从我之前学习的大O符号来看,即使你需要1步(比如检查一个变量,做一个赋值),那也是O(1)。
注意,O(1)和O(6)是一样的,因为“常数”并不重要。这就是为什么O(n)和O(3n)是一样的。
如果你需要1步,那就是O(1)。因为你的程序至少需要1步,所以算法的最小值是O(1)。除非我们不这样做,那么它是O(0),对吧?如果我们做任何操作,那么它就是O(1)这是它能达到的最小值。
(如果我们选择不这样做,那么它可能成为一个禅宗或道的问题……在编程领域,O(1)仍然是最小值)。
或者这样怎么样:
程序员:老板,我找到了一个在O(1)时间内完成的方法! 老板:没必要,今天早上我们就要破产了。 程序员:哦,那么它就变成了O(0)。
其他回答
如果不管输入数据如何,答案都是一样的,那么你就有一个O(0)算法。
或者换句话说——在提交输入数据之前,答案就已经知道了 -这个功能可以优化-所以O(0)
你不能低于O(1)但是O(k) k小于N是可能的。我们称之为次线性时间算法。在某些问题中,次线性时间算法只能给出特定问题的近似解。然而,有时,一个近似解就可以了,可能是因为数据集太大了,或者计算所有数据的计算成本太高了。
我不知道算法,但复杂度小于O(1)出现在随机算法中。实际上,o(1)(小o)小于o(1)这种复杂性通常出现在随机算法中。例如,如你所说,当某个事件的概率为1/n阶时,他们用o(1)表示。或者当他们想说某件事发生的概率很高时(例如1 - 1/n),他们用1 - o(1)表示。
O(1)仅仅表示“常数时间”。
当你给循环[1]添加一个早期退出时,你(在大O符号中)把一个O(1)算法变成了O(n)算法,但使它更快。
诀窍是一般情况下,常数时间算法是最好的,线性算法比指数算法好,但对于n很小的时候,指数算法可能更快。
1:假设这个例子的列表长度是静态的
我相信量子算法可以通过叠加“一次”进行多次计算……
我怀疑这是一个有用的答案。