有没有O(1/n)种算法?

或者其他小于O(1)的数?


当前回答

我相信量子算法可以通过叠加“一次”进行多次计算……

我怀疑这是一个有用的答案。

其他回答

这不可能。Big-O的定义是不大于不平等:

A(n) = O(B(n))
<=>
exists constants C and n0, C > 0, n0 > 0 such that
for all n > n0, A(n) <= C * B(n)

所以B(n)实际上是最大值,因此如果它随着n的增加而减少,估计不会改变。

如果不管输入数据如何,答案都是一样的,那么你就有一个O(0)算法。

或者换句话说——在提交输入数据之前,答案就已经知道了 -这个功能可以优化-所以O(0)

有次线性算法。事实上,Bayer-Moore搜索算法就是一个很好的例子。

如果解决方案存在,它可以在常数时间=立即准备和访问。例如,如果您知道排序查询是针对倒序的,则使用LIFO数据结构。然后,假设选择了适当的模型(LIFO),数据就已经排序了。

没有比O(1)小的数 大o符号表示算法的最大复杂度

如果一个算法的运行时间是n³+ n²+ n + 5那么它就是O(n³) 低次在这里根本不重要,因为n ->正无穷,n^2与n^3相比是无关的

同样地,当n -> Inf时,O(1/n)与O(1)相比是不相关的,因此3 + O(1/n)将与O(1)相同,从而使O(1)的计算复杂度最小