有没有O(1/n)种算法?
或者其他小于O(1)的数?
有没有O(1/n)种算法?
或者其他小于O(1)的数?
当前回答
sharptooth是正确的,O(1)是可能的最佳性能。然而,这并不意味着一个快速的解决方案,只是一个固定时间的解决方案。
一个有趣的变种,也许是真正的建议,是随着人口的增长,哪些问题会变得更容易。我能想出一个虽然是做作的半开玩笑的答案:
一组中有两个人生日相同吗?当n超过365时,返回true。虽然小于365,这是O(nln n)。也许不是一个很好的答案,因为问题不会慢慢变得简单,而是变成O(1)对于n > 365。
其他回答
不,这不可能:
随着n在1/n范围内趋于无穷,我们最终得到1/(无穷),这实际上是0。
因此,问题的大-oh类将是O(0)和一个巨大的n,但更接近常数时间和一个低n。这是不明智的,因为唯一可以在比常数时间更快的时间内完成的事情是:
Void nothing() {};
甚至这也是有争议的!
只要你执行了一个命令,你至少在O(1),所以不,我们不能有一个O(1/n)的大哦类!
随着人口增长,哪些问题会变得更容易?一个答案是像bittorrent这样的东西,下载速度是节点数量的逆函数。与汽车加载越多速度越慢相反,像bittorrent这样的文件共享网络连接的节点越多速度就越快。
我看到一个算法的上限是O(1/n):
由于程序外部的原因(可能是硬件的原因,也可能是处理器中的其他核心的原因),有大量的输入正在发生变化,你必须选择一个随机但有效的输入。
现在,如果它没有变化,你可以简单地列出一个项目列表,随机选择一个,然后得到O(1)次。然而,数据的动态性质使我们无法列出列表,您只能随机探测并测试探测的有效性。(请注意,从本质上讲,不能保证返回时答案仍然有效。这仍然是有用处的——比如游戏中的单位AI。它可以射击在扣动扳机时从视线中消失的目标。)
它的最差情况性能为无穷大,但平均情况性能随着数据空间的填满而下降。
这里有另一种方法来证明它:为了拥有一个函数,你必须调用这个函数,并且你必须返回一个答案。这需要固定的时间。即使余下的处理过程对较大的输入花费更少的时间,打印出答案(我们可以假设是单个位)至少需要常数时间。
inline void O0Algorithm() {}