有没有O(1/n)种算法?

或者其他小于O(1)的数?


当前回答

其余的大多数答案都将大o解释为专门关于算法的运行时间。但是因为问题没有提到它,我认为值得一提的是大o在数值分析中的另一个应用,关于误差。

Many algorithms can be O(h^p) or O(n^{-p}) depending on whether you're talking about step-size (h) or number of divisions (n). For example, in Euler's method, you look for an estimate of y(h) given that you know y(0) and dy/dx (the derivative of y). Your estimate of y(h) is more accurate the closer h is to 0. So in order to find y(x) for some arbitrary x, one takes the interval 0 to x, splits it up until n pieces, and runs Euler's method at each point, to get from y(0) to y(x/n) to y(2x/n), and so on.

欧拉方法是O(h)或O(1/n)算法,其中h通常被解释为步长n被解释为你划分一个区间的次数。

在实际数值分析应用中,由于浮点舍入误差,也可以有O(1/h)。你的间隔越小,某些算法的实现就会抵消得越多,丢失的有效数字就越多,因此在算法中传播的错误也就越多。

For Euler's method, if you are using floating points, use a small enough step and cancellation and you're adding a small number to a big number, leaving the big number unchanged. For algorithms that calculate the derivative through subtracting from each other two numbers from a function evaluated at two very close positions, approximating y'(x) with (y(x+h) - y(x) / h), in smooth functions y(x+h) gets close to y(x) resulting in large cancellation and an estimate for the derivative with fewer significant figures. This will in turn propagate to whatever algorithm you require the derivative for (e.g., a boundary value problem).

其他回答

好吧,我想了一下,也许有一个算法可以遵循这个一般形式:

你需要计算一个1000节点图的旅行商问题,但是,你也有一个你不能访问的节点列表。随着不可访问节点列表的增加,问题变得更容易解决。

O(1)仅仅表示“常数时间”。

当你给循环[1]添加一个早期退出时,你(在大O符号中)把一个O(1)算法变成了O(n)算法,但使它更快。

诀窍是一般情况下,常数时间算法是最好的,线性算法比指数算法好,但对于n很小的时候,指数算法可能更快。

1:假设这个例子的列表长度是静态的

这个问题并不像有些人认为的那样愚蠢。至少在理论上,当我们采用大O符号的数学定义时,像O(1/n)这样的东西是完全合理的:

现在你可以很容易地用g(x)代替1/x……很明显,上面的定义对于某个f仍然成立。

为了估计渐近运行时增长的目的,这是不太可行的……一个有意义的算法不能随着输入的增长而变得更快。当然,你可以构造一个任意的算法来实现这一点,例如下面这个:

def get_faster(list):
    how_long = (1 / len(list)) * 100000
    sleep(how_long)

显然,随着输入大小的增长,这个函数花费的时间更少,至少直到硬件强制的某个限制(数字的精度,睡眠可以等待的最小时间,处理参数的时间等):这个限制将是一个常数下界,因此实际上上面的函数仍然有运行时O(1)。

但实际上,在现实世界中,当输入大小增加时,运行时可能会减少(至少部分减少)。但是请注意,这些算法不会在O(1)以下表现出运行时行为。不过,它们还是很有趣的。以Horspool的非常简单的文本搜索算法为例。在这里,期望运行时将随着搜索模式长度的增加而减少(但是增加草堆长度将再次增加运行时)。

这不可能。Big-O的定义是不大于不平等:

A(n) = O(B(n))
<=>
exists constants C and n0, C > 0, n0 > 0 such that
for all n > n0, A(n) <= C * B(n)

所以B(n)实际上是最大值,因此如果它随着n的增加而减少,估计不会改变。

没有比O(1)小的数 大o符号表示算法的最大复杂度

如果一个算法的运行时间是n³+ n²+ n + 5那么它就是O(n³) 低次在这里根本不重要,因为n ->正无穷,n^2与n^3相比是无关的

同样地,当n -> Inf时,O(1/n)与O(1)相比是不相关的,因此3 + O(1/n)将与O(1)相同,从而使O(1)的计算复杂度最小