有没有O(1/n)种算法?

或者其他小于O(1)的数?


当前回答

其余的大多数答案都将大o解释为专门关于算法的运行时间。但是因为问题没有提到它,我认为值得一提的是大o在数值分析中的另一个应用,关于误差。

Many algorithms can be O(h^p) or O(n^{-p}) depending on whether you're talking about step-size (h) or number of divisions (n). For example, in Euler's method, you look for an estimate of y(h) given that you know y(0) and dy/dx (the derivative of y). Your estimate of y(h) is more accurate the closer h is to 0. So in order to find y(x) for some arbitrary x, one takes the interval 0 to x, splits it up until n pieces, and runs Euler's method at each point, to get from y(0) to y(x/n) to y(2x/n), and so on.

欧拉方法是O(h)或O(1/n)算法,其中h通常被解释为步长n被解释为你划分一个区间的次数。

在实际数值分析应用中,由于浮点舍入误差,也可以有O(1/h)。你的间隔越小,某些算法的实现就会抵消得越多,丢失的有效数字就越多,因此在算法中传播的错误也就越多。

For Euler's method, if you are using floating points, use a small enough step and cancellation and you're adding a small number to a big number, leaving the big number unchanged. For algorithms that calculate the derivative through subtracting from each other two numbers from a function evaluated at two very close positions, approximating y'(x) with (y(x+h) - y(x) / h), in smooth functions y(x+h) gets close to y(x) resulting in large cancellation and an estimate for the derivative with fewer significant figures. This will in turn propagate to whatever algorithm you require the derivative for (e.g., a boundary value problem).

其他回答

O(1)仅仅表示“常数时间”。

当你给循环[1]添加一个早期退出时,你(在大O符号中)把一个O(1)算法变成了O(n)算法,但使它更快。

诀窍是一般情况下,常数时间算法是最好的,线性算法比指数算法好,但对于n很小的时候,指数算法可能更快。

1:假设这个例子的列表长度是静态的

正如已经指出的,除了null函数可能的例外,不可能有O(1/n)个函数,因为所花费的时间必须接近0。

当然,有一些算法,比如康拉德定义的算法,它们至少在某种意义上应该小于O(1)

def get_faster(list):
    how_long = 1/len(list)
    sleep(how_long)

If you want to investigate these algorithms, you should either define your own asymptotic measurement, or your own notion of time. For example, in the above algorithm, I could allow the use of a number of "free" operations a set amount of times. In the above algorithm, if I define t' by excluding the time for everything but the sleep, then t'=1/n, which is O(1/n). There are probably better examples, as the asymptotic behavior is trivial. In fact, I am sure that someone out there can come up with senses that give non-trivial results.

那么这个呢:

void FindRandomInList(list l)
{
    while(1)
    {
        int rand = Random.next();
        if (l.contains(rand))
            return;
    }
}

随着列表大小的增加,程序的预期运行时间会减少。

没有比O(1)小的数 大o符号表示算法的最大复杂度

如果一个算法的运行时间是n³+ n²+ n + 5那么它就是O(n³) 低次在这里根本不重要,因为n ->正无穷,n^2与n^3相比是无关的

同样地,当n -> Inf时,O(1/n)与O(1)相比是不相关的,因此3 + O(1/n)将与O(1)相同,从而使O(1)的计算复杂度最小

好吧,我想了一下,也许有一个算法可以遵循这个一般形式:

你需要计算一个1000节点图的旅行商问题,但是,你也有一个你不能访问的节点列表。随着不可访问节点列表的增加,问题变得更容易解决。