有没有O(1/n)种算法?
或者其他小于O(1)的数?
有没有O(1/n)种算法?
或者其他小于O(1)的数?
当前回答
这个问题并不像有些人认为的那样愚蠢。至少在理论上,当我们采用大O符号的数学定义时,像O(1/n)这样的东西是完全合理的:
现在你可以很容易地用g(x)代替1/x……很明显,上面的定义对于某个f仍然成立。
为了估计渐近运行时增长的目的,这是不太可行的……一个有意义的算法不能随着输入的增长而变得更快。当然,你可以构造一个任意的算法来实现这一点,例如下面这个:
def get_faster(list):
how_long = (1 / len(list)) * 100000
sleep(how_long)
显然,随着输入大小的增长,这个函数花费的时间更少,至少直到硬件强制的某个限制(数字的精度,睡眠可以等待的最小时间,处理参数的时间等):这个限制将是一个常数下界,因此实际上上面的函数仍然有运行时O(1)。
但实际上,在现实世界中,当输入大小增加时,运行时可能会减少(至少部分减少)。但是请注意,这些算法不会在O(1)以下表现出运行时行为。不过,它们还是很有趣的。以Horspool的非常简单的文本搜索算法为例。在这里,期望运行时将随着搜索模式长度的增加而减少(但是增加草堆长度将再次增加运行时)。
其他回答
大o符号表示算法与典型运行时不同的最坏情况。证明O(1/n)算法是O(1)算法很简单。根据定义, O(1/n)——> T(n) <= 1/n, for all n >= C > 0 O (1 / n)——> T (n) < = 1 / C,因为1 / n <所有n > = 1 / C = C O(1/n)——> O(1),因为大O符号忽略常数(即C的值无关紧要)
我相信量子算法可以通过叠加“一次”进行多次计算……
我怀疑这是一个有用的答案。
不,这不可能:
随着n在1/n范围内趋于无穷,我们最终得到1/(无穷),这实际上是0。
因此,问题的大-oh类将是O(0)和一个巨大的n,但更接近常数时间和一个低n。这是不明智的,因为唯一可以在比常数时间更快的时间内完成的事情是:
Void nothing() {};
甚至这也是有争议的!
只要你执行了一个命令,你至少在O(1),所以不,我们不能有一个O(1/n)的大哦类!
O(1)仅仅表示“常数时间”。
当你给循环[1]添加一个早期退出时,你(在大O符号中)把一个O(1)算法变成了O(n)算法,但使它更快。
诀窍是一般情况下,常数时间算法是最好的,线性算法比指数算法好,但对于n很小的时候,指数算法可能更快。
1:假设这个例子的列表长度是静态的
正如已经指出的,除了null函数可能的例外,不可能有O(1/n)个函数,因为所花费的时间必须接近0。
当然,有一些算法,比如康拉德定义的算法,它们至少在某种意义上应该小于O(1)
def get_faster(list):
how_long = 1/len(list)
sleep(how_long)
If you want to investigate these algorithms, you should either define your own asymptotic measurement, or your own notion of time. For example, in the above algorithm, I could allow the use of a number of "free" operations a set amount of times. In the above algorithm, if I define t' by excluding the time for everything but the sleep, then t'=1/n, which is O(1/n). There are probably better examples, as the asymptotic behavior is trivial. In fact, I am sure that someone out there can come up with senses that give non-trivial results.