我有一组整数。我想用动态规划的方法求出这个集合的最长递增子序列。


当前回答

求最长递增子序列的O(NLog(N))方法 让我们维护一个数组,其中第i个元素是一个大小为i的子序列可以结束的最小的数字。

我故意避免进一步的细节,因为投票最多的答案已经解释了它,但这种技术最终导致使用set数据结构的整洁实现(至少在c++中)。

下面是c++中的实现(假设需要严格增加最长子序列的大小)

#include <bits/stdc++.h> // gcc supported header to include (almost) everything
using namespace std;
typedef long long ll;

int main()
{
  ll n;
  cin >> n;
  ll arr[n];
  set<ll> S;

  for(ll i=0; i<n; i++)
  {
    cin >> arr[i];
    auto it = S.lower_bound(arr[i]);
    if(it != S.end())
      S.erase(it);
    S.insert(arr[i]);
  }

  cout << S.size() << endl; // Size of the set is the required answer

  return 0;
}

其他回答

O(n²)java实现:

void LIS(int arr[]){
        int maxCount[]=new int[arr.length];
        int link[]=new int[arr.length];
        int maxI=0;
        link[0]=0;
        maxCount[0]=0;

        for (int i = 1; i < arr.length; i++) {
            for (int j = 0; j < i; j++) {
                if(arr[j]<arr[i] && ((maxCount[j]+1)>maxCount[i])){
                    maxCount[i]=maxCount[j]+1;
                    link[i]=j;
                    if(maxCount[i]>maxCount[maxI]){
                        maxI=i;
                    }
                }
            }
        }


        for (int i = 0; i < link.length; i++) {
            System.out.println(arr[i]+"   "+link[i]);
        }
        print(arr,maxI,link);

    }

    void print(int arr[],int index,int link[]){
        if(link[index]==index){
            System.out.println(arr[index]+" ");
            return;
        }else{
            print(arr, link[index], link);
            System.out.println(arr[index]+" ");
        }
    }

这是一个O(n²)的Java实现。我只是没有使用二分搜索来找到S中最小的元素,它是>= than x,我只是使用了一个for循环。使用二分搜索将使复杂度为O(n logn)

public static void olis(int[] seq){

    int[] memo = new int[seq.length];

    memo[0] = seq[0];
    int pos = 0;

    for (int i=1; i<seq.length; i++){

        int x = seq[i];

            if (memo[pos] < x){ 
                pos++;
                memo[pos] = x;
            } else {

                for(int j=0; j<=pos; j++){
                    if (memo[j] >= x){
                        memo[j] = x;
                        break;
                    }
                }
            }
            //just to print every step
            System.out.println(Arrays.toString(memo));
    }

    //the final array with the LIS
    System.out.println(Arrays.toString(memo));
    System.out.println("The length of lis is " + (pos + 1));

}

我已经在java中使用动态编程和记忆实现了LIS。随着代码,我做了复杂性计算,即为什么它是O(n Log(base2) n)。因为我觉得理论或逻辑解释是很好的,但实际演示总是更好的理解。

package com.company.dynamicProgramming;

import java.util.HashMap;
import java.util.Map;

public class LongestIncreasingSequence {

    static int complexity = 0;

    public static void main(String ...args){


        int[] arr = {10, 22, 9, 33, 21, 50, 41, 60, 80};
        int n = arr.length;

        Map<Integer, Integer> memo = new HashMap<>();

        lis(arr, n, memo);

        //Display Code Begins
        int x = 0;
        System.out.format("Longest Increasing Sub-Sequence with size %S is -> ",memo.get(n));
        for(Map.Entry e : memo.entrySet()){

            if((Integer)e.getValue() > x){
                System.out.print(arr[(Integer)e.getKey()-1] + " ");
                x++;
            }
        }
        System.out.format("%nAnd Time Complexity for Array size %S is just %S ", arr.length, complexity );
        System.out.format( "%nWhich is equivalent to O(n Log n) i.e. %SLog(base2)%S is %S",arr.length,arr.length, arr.length * Math.ceil(Math.log(arr.length)/Math.log(2)));
        //Display Code Ends

    }



    static int lis(int[] arr, int n, Map<Integer, Integer> memo){

        if(n==1){
            memo.put(1, 1);
            return 1;
        }

        int lisAti;
        int lisAtn = 1;

        for(int i = 1; i < n; i++){
            complexity++;

            if(memo.get(i)!=null){
                lisAti = memo.get(i);
            }else {
                lisAti = lis(arr, i, memo);
            }

            if(arr[i-1] < arr[n-1] && lisAti +1 > lisAtn){
                lisAtn = lisAti +1;
            }
        }

        memo.put(n, lisAtn);
        return lisAtn;

    }
}

当我运行上面的代码-

Longest Increasing Sub-Sequence with size 6 is -> 10 22 33 50 60 80 
And Time Complexity for Array size 9 is just 36 
Which is equivalent to O(n Log n) i.e. 9Log(base2)9 is 36.0
Process finished with exit code 0

这可以用动态规划在O(n²)中解决。同样的Python代码是这样的:-

def LIS(numlist):
    LS = [1]
    for i in range(1, len(numlist)):
        LS.append(1)
        for j in range(0, i):
            if numlist[i] > numlist[j] and LS[i]<=LS[j]:
                LS[i] = 1 + LS[j]
    print LS
    return max(LS)

numlist = map(int, raw_input().split(' '))
print LIS(numlist)

输入:5 19 5 81 50 28 29 1 83 23

输出将是:[1,2,1,3,3,3,4,1,5,3] 5

输出列表的list_index是输入列表的list_index。输出列表中给定list_index的值表示该list_index的最长递增子序列长度。

def longestincrsub(arr1):
    n=len(arr1)
    l=[1]*n
    for i in range(0,n):
        for j in range(0,i)  :
            if arr1[j]<arr1[i] and l[i]<l[j] + 1:
                l[i] =l[j] + 1
    l.sort()
    return l[-1]
arr1=[10,22,9,33,21,50,41,60]
a=longestincrsub(arr1)
print(a)

尽管有一种方法可以在O(nlogn)时间内解决这个问题(它在O(n²)时间内解决)但这种方法仍然提供了动态规划方法,这也是很好的。