我有一组整数。我想用动态规划的方法求出这个集合的最长递增子序列。
当前回答
下面是从动态规划的角度评估问题的三个步骤:
递归定义:maxLength(i) == 1 + maxLength(j) where 0 < j < i and array[i] > array[j] 递归参数边界:可能有0到i - 1个子序列作为参数传递 求值顺序:由于是递增子序列,所以要从0求值到n
如果我们以序列{0,8,2,3,7,9}为例,at index:
我们会得到子序列{0}作为基本情况 [1]有一个新的子序列{0,8} [2]试图评估两个新的序列{0,8,2}和{0,2}通过添加元素在索引2到现有的子序列-只有一个是有效的,所以添加第三个可能的序列{0,2}只到参数列表 ...
下面是c++ 11的工作代码:
#include <iostream>
#include <vector>
int getLongestIncSub(const std::vector<int> &sequence, size_t index, std::vector<std::vector<int>> &sub) {
if(index == 0) {
sub.push_back(std::vector<int>{sequence[0]});
return 1;
}
size_t longestSubSeq = getLongestIncSub(sequence, index - 1, sub);
std::vector<std::vector<int>> tmpSubSeq;
for(std::vector<int> &subSeq : sub) {
if(subSeq[subSeq.size() - 1] < sequence[index]) {
std::vector<int> newSeq(subSeq);
newSeq.push_back(sequence[index]);
longestSubSeq = std::max(longestSubSeq, newSeq.size());
tmpSubSeq.push_back(newSeq);
}
}
std::copy(tmpSubSeq.begin(), tmpSubSeq.end(),
std::back_insert_iterator<std::vector<std::vector<int>>>(sub));
return longestSubSeq;
}
int getLongestIncSub(const std::vector<int> &sequence) {
std::vector<std::vector<int>> sub;
return getLongestIncSub(sequence, sequence.size() - 1, sub);
}
int main()
{
std::vector<int> seq{0, 8, 2, 3, 7, 9};
std::cout << getLongestIncSub(seq);
return 0;
}
其他回答
这里是java O(nlogn)的实现
import java.util.Scanner;
public class LongestIncreasingSeq {
private static int binarySearch(int table[],int a,int len){
int end = len-1;
int beg = 0;
int mid = 0;
int result = -1;
while(beg <= end){
mid = (end + beg) / 2;
if(table[mid] < a){
beg=mid+1;
result = mid;
}else if(table[mid] == a){
return len-1;
}else{
end = mid-1;
}
}
return result;
}
public static void main(String[] args) {
// int[] t = {1, 2, 5,9,16};
// System.out.println(binarySearch(t , 9, 5));
Scanner in = new Scanner(System.in);
int size = in.nextInt();//4;
int A[] = new int[size];
int table[] = new int[A.length];
int k = 0;
while(k<size){
A[k++] = in.nextInt();
if(k<size-1)
in.nextLine();
}
table[0] = A[0];
int len = 1;
for (int i = 1; i < A.length; i++) {
if(table[0] > A[i]){
table[0] = A[i];
}else if(table[len-1]<A[i]){
table[len++]=A[i];
}else{
table[binarySearch(table, A[i],len)+1] = A[i];
}
}
System.out.println(len);
}
}
//可以使用TreeSet
def longestincrsub(arr1):
n=len(arr1)
l=[1]*n
for i in range(0,n):
for j in range(0,i) :
if arr1[j]<arr1[i] and l[i]<l[j] + 1:
l[i] =l[j] + 1
l.sort()
return l[-1]
arr1=[10,22,9,33,21,50,41,60]
a=longestincrsub(arr1)
print(a)
尽管有一种方法可以在O(nlogn)时间内解决这个问题(它在O(n²)时间内解决)但这种方法仍然提供了动态规划方法,这也是很好的。
好的,我先描述最简单的解也就是O(N²)N是集合的大小。还有一个O(N log N)解,我也会讲到。在高效算法一节中可以找到。
我假设数组的下标从0到N - 1。因此,让我们定义DP[i]为LIS(最长递增子序列)的长度,它结束于索引为i的元素。为了计算DP[i],我们查看所有索引j < i,并检查DP[j] + 1 > DP[i]和array[j] < array[i](我们希望它是递增的)。如果这是真的,我们可以更新DP[i]的当前最优值。要找到数组的全局最优值,您可以从DP[0…]N - 1]。
int maxLength = 1, bestEnd = 0;
DP[0] = 1;
prev[0] = -1;
for (int i = 1; i < N; i++)
{
DP[i] = 1;
prev[i] = -1;
for (int j = i - 1; j >= 0; j--)
if (DP[j] + 1 > DP[i] && array[j] < array[i])
{
DP[i] = DP[j] + 1;
prev[i] = j;
}
if (DP[i] > maxLength)
{
bestEnd = i;
maxLength = DP[i];
}
}
我使用数组prev是为了以后能够找到实际的序列,而不仅仅是它的长度。只需在循环中使用prev[bestEnd]从bestEnd递归返回。-1值是停止的标志。
好了,现在来看更有效的O(nlog N)解:
设S[pos]定义为长度为pos的递增序列结束的最小整数。现在遍历输入集的每个整数X,并执行以下操作:
如果X >是S中的最后一个元素,那么将X附加到S的末尾,这本质上意味着我们已经找到了一个新的最大的LIS。 否则,找到S中最小的元素,即>= X,并将其改为X。 因为S在任何时候都是排序的,所以可以使用log(N)的二分搜索来找到元素。
总运行时间- N个整数,并对每个整数进行二进制搜索- N * log(N) = O(N log N)
现在我们来做一个真实的例子:
整数的集合: 2 6 3 4 1 2 9 5 8
步骤:
0. S = {} - Initialize S to the empty set
1. S = {2} - New largest LIS
2. S = {2, 6} - New largest LIS
3. S = {2, 3} - Changed 6 to 3
4. S = {2, 3, 4} - New largest LIS
5. S = {1, 3, 4} - Changed 2 to 1
6. S = {1, 2, 4} - Changed 3 to 2
7. S = {1, 2, 4, 9} - New largest LIS
8. S = {1, 2, 4, 5} - Changed 9 to 5
9. S = {1, 2, 4, 5, 8} - New largest LIS
所以LIS的长度是5 (S的大小)。
为了重建实际的LIS,我们将再次使用父数组。 设parent[i]是LIS中索引为i的元素的前身,该元素以索引为i的元素结束。
为了使事情更简单,我们可以在数组S中保留不是实际的整数,而是它们在集合中的下标(位置)。我们不保留{1,2,4,5,8},而是保留{4,5,3,7,8}。
即输入[4]= 1,输入[5]= 2,输入[3]= 4,输入[7]= 5,输入[8]= 8。
如果我们正确地更新父数组,实际的LIS是:
input[S[lastElementOfS]],
input[parent[S[lastElementOfS]]],
input[parent[parent[S[lastElementOfS]]]],
........................................
现在重要的是,我们如何更新父数组?有两种选择:
如果X >是S中的最后一个元素,那么parent[indexX] = indexLastElement。这意味着最新元素的父元素是最后一个元素。我们只是在S的末尾加上X。 否则,找到S中最小元素的索引>= than X,并将其更改为X。这里parent[indexX] = S[index - 1]。
c++中最简单的LIS解决方案,具有O(nlog(n))时间复杂度
#include <iostream>
#include "vector"
using namespace std;
// binary search (If value not found then it will return the index where the value should be inserted)
int ceilBinarySearch(vector<int> &a,int beg,int end,int value)
{
if(beg<=end)
{
int mid = (beg+end)/2;
if(a[mid] == value)
return mid;
else if(value < a[mid])
return ceilBinarySearch(a,beg,mid-1,value);
else
return ceilBinarySearch(a,mid+1,end,value);
return 0;
}
return beg;
}
int lis(vector<int> arr)
{
vector<int> dp(arr.size(),0);
int len = 0;
for(int i = 0;i<arr.size();i++)
{
int j = ceilBinarySearch(dp,0,len-1,arr[i]);
dp[j] = arr[i];
if(j == len)
len++;
}
return len;
}
int main()
{
vector<int> arr {2, 5,-1,0,6,1,2};
cout<<lis(arr);
return 0;
}
输出: 4
求最长递增子序列(LIS)的O(NLog(N))递归DP方法
解释
该算法涉及创建节点格式为(a,b)的树。
A表示到目前为止我们考虑添加到有效子序列的下一个元素。
B表示剩余子数组的起始索引,如果a被添加到目前为止我们所拥有的子数组的末尾,则下一个决策将从该子数组开始。
算法
We start with an invalid root (INT_MIN,0), pointing at index zero of the array since subsequence is empty at this point, i.e. b = 0. Base Case: return 1 if b >= array.length. Loop through all the elements in the array from the b index to the end of the array, i.e i = b ... array.length-1. i) If an element, array[i] is greater than the current a, it is qualified to be considered as one of the elements to be appended to the subsequence we have so far. ii) Recurse into the node (array[i],b+1), where a is the element we encountered in 2(i) which is qualified to be appended to the subsequence we have so far. And b+1 is the next index of the array to be considered. iii) Return the max length obtained by looping through i = b ... array.length. In a case where a is bigger than any other element from i = b to array.length, return 1. Compute the level of the tree built as level. Finally, level - 1 is the desired LIS. That is the number of edges in the longest path of the tree.
注意:算法的记忆部分被省略了,因为它是从树中清除的。
随便举个例子 标记为x的节点从DB内存值中获取。
Java实现
public int lengthOfLIS(int[] nums) {
return LIS(nums,Integer.MIN_VALUE, 0,new HashMap<>()) -1;
}
public int LIS(int[] arr, int value, int nextIndex, Map<String,Integer> memo){
if(memo.containsKey(value+","+nextIndex))return memo.get(value+","+nextIndex);
if(nextIndex >= arr.length)return 1;
int max = Integer.MIN_VALUE;
for(int i=nextIndex; i<arr.length; i++){
if(arr[i] > value){
max = Math.max(max,LIS(arr,arr[i],i+1,memo));
}
}
if(max == Integer.MIN_VALUE)return 1;
max++;
memo.put(value+","+nextIndex,max);
return max;
}