我有一组整数。我想用动态规划的方法求出这个集合的最长递增子序列。


当前回答

def longestincrsub(arr1):
    n=len(arr1)
    l=[1]*n
    for i in range(0,n):
        for j in range(0,i)  :
            if arr1[j]<arr1[i] and l[i]<l[j] + 1:
                l[i] =l[j] + 1
    l.sort()
    return l[-1]
arr1=[10,22,9,33,21,50,41,60]
a=longestincrsub(arr1)
print(a)

尽管有一种方法可以在O(nlogn)时间内解决这个问题(它在O(n²)时间内解决)但这种方法仍然提供了动态规划方法,这也是很好的。

其他回答

这是另一个O(n²)JAVA实现。不需要递归/记忆来生成实际的子序列。只是一个字符串数组,存储每个阶段的实际LIS和一个数组,存储每个元素的LIS的长度。非常简单。看看吧:

import java.io.BufferedReader;
import java.io.InputStreamReader;

/**
 * Created by Shreyans on 4/16/2015
 */

class LNG_INC_SUB//Longest Increasing Subsequence
{
    public static void main(String[] args) throws Exception
    {
        BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
        System.out.println("Enter Numbers Separated by Spaces to find their LIS\n");
        String[] s1=br.readLine().split(" ");
        int n=s1.length;
        int[] a=new int[n];//Array actual of Numbers
        String []ls=new String[n];// Array of Strings to maintain LIS for every element
        for(int i=0;i<n;i++)
        {
            a[i]=Integer.parseInt(s1[i]);
        }
        int[]dp=new int[n];//Storing length of max subseq.
        int max=dp[0]=1;//Defaults
        String seq=ls[0]=s1[0];//Defaults
        for(int i=1;i<n;i++)
        {
            dp[i]=1;
            String x="";
            for(int j=i-1;j>=0;j--)
            {
                //First check if number at index j is less than num at i.
                // Second the length of that DP should be greater than dp[i]
                // -1 since dp of previous could also be one. So we compare the dp[i] as empty initially
                if(a[j]<a[i]&&dp[j]>dp[i]-1)
                {
                    dp[i]=dp[j]+1;//Assigning temp length of LIS. There may come along a bigger LIS of a future a[j]
                    x=ls[j];//Assigning temp LIS of a[j]. Will append a[i] later on
                }
            }
            x+=(" "+a[i]);
            ls[i]=x;
            if(dp[i]>max)
            {
                max=dp[i];
                seq=ls[i];
            }
        }
        System.out.println("Length of LIS is: " + max + "\nThe Sequence is: " + seq);
    }
}

实际代码:http://ideone.com/sBiOQx

下面是从动态规划的角度评估问题的三个步骤:

递归定义:maxLength(i) == 1 + maxLength(j) where 0 < j < i and array[i] > array[j] 递归参数边界:可能有0到i - 1个子序列作为参数传递 求值顺序:由于是递增子序列,所以要从0求值到n

如果我们以序列{0,8,2,3,7,9}为例,at index:

我们会得到子序列{0}作为基本情况 [1]有一个新的子序列{0,8} [2]试图评估两个新的序列{0,8,2}和{0,2}通过添加元素在索引2到现有的子序列-只有一个是有效的,所以添加第三个可能的序列{0,2}只到参数列表 ...

下面是c++ 11的工作代码:

#include <iostream>
#include <vector>

int getLongestIncSub(const std::vector<int> &sequence, size_t index, std::vector<std::vector<int>> &sub) {
    if(index == 0) {
        sub.push_back(std::vector<int>{sequence[0]});
        return 1;
    }

    size_t longestSubSeq = getLongestIncSub(sequence, index - 1, sub);
    std::vector<std::vector<int>> tmpSubSeq;
    for(std::vector<int> &subSeq : sub) {
        if(subSeq[subSeq.size() - 1] < sequence[index]) {
            std::vector<int> newSeq(subSeq);
            newSeq.push_back(sequence[index]);
            longestSubSeq = std::max(longestSubSeq, newSeq.size());
            tmpSubSeq.push_back(newSeq);
        }
    }
    std::copy(tmpSubSeq.begin(), tmpSubSeq.end(),
              std::back_insert_iterator<std::vector<std::vector<int>>>(sub));

    return longestSubSeq;
}

int getLongestIncSub(const std::vector<int> &sequence) {
    std::vector<std::vector<int>> sub;
    return getLongestIncSub(sequence, sequence.size() - 1, sub);
}

int main()
{
    std::vector<int> seq{0, 8, 2, 3, 7, 9};
    std::cout << getLongestIncSub(seq);
    return 0;
}

求最长递增子序列的O(NLog(N))方法 让我们维护一个数组,其中第i个元素是一个大小为i的子序列可以结束的最小的数字。

我故意避免进一步的细节,因为投票最多的答案已经解释了它,但这种技术最终导致使用set数据结构的整洁实现(至少在c++中)。

下面是c++中的实现(假设需要严格增加最长子序列的大小)

#include <bits/stdc++.h> // gcc supported header to include (almost) everything
using namespace std;
typedef long long ll;

int main()
{
  ll n;
  cin >> n;
  ll arr[n];
  set<ll> S;

  for(ll i=0; i<n; i++)
  {
    cin >> arr[i];
    auto it = S.lower_bound(arr[i]);
    if(it != S.end())
      S.erase(it);
    S.insert(arr[i]);
  }

  cout << S.size() << endl; // Size of the set is the required answer

  return 0;
}
def longestincrsub(arr1):
    n=len(arr1)
    l=[1]*n
    for i in range(0,n):
        for j in range(0,i)  :
            if arr1[j]<arr1[i] and l[i]<l[j] + 1:
                l[i] =l[j] + 1
    l.sort()
    return l[-1]
arr1=[10,22,9,33,21,50,41,60]
a=longestincrsub(arr1)
print(a)

尽管有一种方法可以在O(nlogn)时间内解决这个问题(它在O(n²)时间内解决)但这种方法仍然提供了动态规划方法,这也是很好的。

下面的c++实现还包括一些使用名为prev的数组构建实际最长递增子序列的代码。

std::vector<int> longest_increasing_subsequence (const std::vector<int>& s)
{
    int best_end = 0;
    int sz = s.size();

    if (!sz)
        return std::vector<int>();

    std::vector<int> prev(sz,-1);
    std::vector<int> memo(sz, 0);

    int max_length = std::numeric_limits<int>::min();

    memo[0] = 1;

    for ( auto i = 1; i < sz; ++i)
    {
        for ( auto j = 0; j < i; ++j)
        {
            if ( s[j] < s[i] && memo[i] < memo[j] + 1 )
            {
                memo[i] =  memo[j] + 1;
                prev[i] =  j;
            }
        }

        if ( memo[i] > max_length ) 
        {
            best_end = i;
            max_length = memo[i];
        }
    }

    // Code that builds the longest increasing subsequence using "prev"
    std::vector<int> results;
    results.reserve(sz);

    std::stack<int> stk;
    int current = best_end;

    while (current != -1)
    {
        stk.push(s[current]);
        current = prev[current];
    }

    while (!stk.empty())
    {
        results.push_back(stk.top());
        stk.pop();
    }

    return results;
}

没有堆栈的实现只是反转向量

#include <iostream>
#include <vector>
#include <limits>
std::vector<int> LIS( const std::vector<int> &v ) {
  auto sz = v.size();
  if(!sz)
    return v;
  std::vector<int> memo(sz, 0);
  std::vector<int> prev(sz, -1);
  memo[0] = 1;
  int best_end = 0;
  int max_length = std::numeric_limits<int>::min();
  for (auto i = 1; i < sz; ++i) {
    for ( auto j = 0; j < i ; ++j) {
      if (s[j] < s[i] && memo[i] < memo[j] + 1) {
        memo[i] = memo[j] + 1;
        prev[i] = j;
      }
    }
    if(memo[i] > max_length) {
      best_end = i;
      max_length = memo[i];
    }
  }

  // create results
  std::vector<int> results;
  results.reserve(v.size());
  auto current = best_end;
  while (current != -1) {
    results.push_back(s[current]);
    current = prev[current];
  }
  std::reverse(results.begin(), results.end());
  return results;
}