我有一组整数。我想用动态规划的方法求出这个集合的最长递增子序列。
当前回答
下面的c++实现还包括一些使用名为prev的数组构建实际最长递增子序列的代码。
std::vector<int> longest_increasing_subsequence (const std::vector<int>& s)
{
int best_end = 0;
int sz = s.size();
if (!sz)
return std::vector<int>();
std::vector<int> prev(sz,-1);
std::vector<int> memo(sz, 0);
int max_length = std::numeric_limits<int>::min();
memo[0] = 1;
for ( auto i = 1; i < sz; ++i)
{
for ( auto j = 0; j < i; ++j)
{
if ( s[j] < s[i] && memo[i] < memo[j] + 1 )
{
memo[i] = memo[j] + 1;
prev[i] = j;
}
}
if ( memo[i] > max_length )
{
best_end = i;
max_length = memo[i];
}
}
// Code that builds the longest increasing subsequence using "prev"
std::vector<int> results;
results.reserve(sz);
std::stack<int> stk;
int current = best_end;
while (current != -1)
{
stk.push(s[current]);
current = prev[current];
}
while (!stk.empty())
{
results.push_back(stk.top());
stk.pop();
}
return results;
}
没有堆栈的实现只是反转向量
#include <iostream>
#include <vector>
#include <limits>
std::vector<int> LIS( const std::vector<int> &v ) {
auto sz = v.size();
if(!sz)
return v;
std::vector<int> memo(sz, 0);
std::vector<int> prev(sz, -1);
memo[0] = 1;
int best_end = 0;
int max_length = std::numeric_limits<int>::min();
for (auto i = 1; i < sz; ++i) {
for ( auto j = 0; j < i ; ++j) {
if (s[j] < s[i] && memo[i] < memo[j] + 1) {
memo[i] = memo[j] + 1;
prev[i] = j;
}
}
if(memo[i] > max_length) {
best_end = i;
max_length = memo[i];
}
}
// create results
std::vector<int> results;
results.reserve(v.size());
auto current = best_end;
while (current != -1) {
results.push_back(s[current]);
current = prev[current];
}
std::reverse(results.begin(), results.end());
return results;
}
其他回答
说到DP solution,我发现很奇怪的是没有人提到LIS可以简化为LCS。你所需要做的就是对原始序列的副本进行排序,删除所有重复的副本,然后对它们进行LCS。在伪代码中是:
def LIS(S):
T = sort(S)
T = removeDuplicates(T)
return LCS(S, T)
以及用Go语言编写的完整实现。如果你不需要重构解,你就不需要维护整个n^2 DP矩阵。
func lcs(arr1 []int) int {
arr2 := make([]int, len(arr1))
for i, v := range arr1 {
arr2[i] = v
}
sort.Ints(arr1)
arr3 := []int{}
prev := arr1[0] - 1
for _, v := range arr1 {
if v != prev {
prev = v
arr3 = append(arr3, v)
}
}
n1, n2 := len(arr1), len(arr3)
M := make([][]int, n2 + 1)
e := make([]int, (n1 + 1) * (n2 + 1))
for i := range M {
M[i] = e[i * (n1 + 1):(i + 1) * (n1 + 1)]
}
for i := 1; i <= n2; i++ {
for j := 1; j <= n1; j++ {
if arr2[j - 1] == arr3[i - 1] {
M[i][j] = M[i - 1][j - 1] + 1
} else if M[i - 1][j] > M[i][j - 1] {
M[i][j] = M[i - 1][j]
} else {
M[i][j] = M[i][j - 1]
}
}
}
return M[n2][n1]
}
这可以用动态规划在O(n²)中解决。同样的Python代码是这样的:-
def LIS(numlist):
LS = [1]
for i in range(1, len(numlist)):
LS.append(1)
for j in range(0, i):
if numlist[i] > numlist[j] and LS[i]<=LS[j]:
LS[i] = 1 + LS[j]
print LS
return max(LS)
numlist = map(int, raw_input().split(' '))
print LIS(numlist)
输入:5 19 5 81 50 28 29 1 83 23
输出将是:[1,2,1,3,3,3,4,1,5,3] 5
输出列表的list_index是输入列表的list_index。输出列表中给定list_index的值表示该list_index的最长递增子序列长度。
c++中最简单的LIS解决方案,具有O(nlog(n))时间复杂度
#include <iostream>
#include "vector"
using namespace std;
// binary search (If value not found then it will return the index where the value should be inserted)
int ceilBinarySearch(vector<int> &a,int beg,int end,int value)
{
if(beg<=end)
{
int mid = (beg+end)/2;
if(a[mid] == value)
return mid;
else if(value < a[mid])
return ceilBinarySearch(a,beg,mid-1,value);
else
return ceilBinarySearch(a,mid+1,end,value);
return 0;
}
return beg;
}
int lis(vector<int> arr)
{
vector<int> dp(arr.size(),0);
int len = 0;
for(int i = 0;i<arr.size();i++)
{
int j = ceilBinarySearch(dp,0,len-1,arr[i]);
dp[j] = arr[i];
if(j == len)
len++;
}
return len;
}
int main()
{
vector<int> arr {2, 5,-1,0,6,1,2};
cout<<lis(arr);
return 0;
}
输出: 4
这是我的Leetcode解决方案使用二进制搜索:->
class Solution:
def binary_search(self,s,x):
low=0
high=len(s)-1
flag=1
while low<=high:
mid=(high+low)//2
if s[mid]==x:
flag=0
break
elif s[mid]<x:
low=mid+1
else:
high=mid-1
if flag:
s[low]=x
return s
def lengthOfLIS(self, nums: List[int]) -> int:
if not nums:
return 0
s=[]
s.append(nums[0])
for i in range(1,len(nums)):
if s[-1]<nums[i]:
s.append(nums[i])
else:
s=self.binary_search(s,nums[i])
return len(s)
这可以用动态规划在O(n²)中解决。
按顺序处理输入元素,并为每个元素维护一个元组列表。每个元组(A,B),对于i将表示的元素,A =以i结尾的最长递增子序列的长度,B =以列表[i]结尾的最长递增子序列中列表[i]的前身的索引。
从元素1开始,元素1的元组列表为[(1,0)] 对于元素i,扫描列表0..i,找到元素list[k],使得list[k] < list[i],元素i的A值,Ai为Ak + 1, Bi为k。如果有多个这样的元素,将它们添加到元素i的元组列表中。
最后,找到所有最大值为A (LIS以element结尾的长度)的元素,并使用元组回溯以获得列表。
我已经在http://www.edufyme.com/code/?id=66f041e16a60928b05a7e228a89c3799上分享了相同的代码
推荐文章
- 有效的方法应用多个过滤器的熊猫数据框架或系列
- 哪些是遗传算法/遗传规划解决方案的好例子?
- 如何在O(n)中找到长度为n的无序数组中的第k大元素?
- 一个用于膨胀/收缩(抵消,缓冲)多边形的算法
- 我如何使用Node.js Crypto创建HMAC-SHA1哈希?
- 是否有一个装饰器来缓存函数返回值?
- 如何用动态规划确定最长递增子序列?
- 在c++程序中以编程方式检测字节序
- 理解递归
- 段树、区间树、二叉索引树和范围树之间有什么区别?
- 给定一个数字,找出下一个与原始数字具有完全相同的数字集的更高的数字
- HSL到RGB的颜色转换
- 使用Java在原语数组中查找最大/最小值
- 好的Java图算法库?
- foreach和map有区别吗?