我有一组整数。我想用动态规划的方法求出这个集合的最长递增子序列。
当前回答
好的,我先描述最简单的解也就是O(N²)N是集合的大小。还有一个O(N log N)解,我也会讲到。在高效算法一节中可以找到。
我假设数组的下标从0到N - 1。因此,让我们定义DP[i]为LIS(最长递增子序列)的长度,它结束于索引为i的元素。为了计算DP[i],我们查看所有索引j < i,并检查DP[j] + 1 > DP[i]和array[j] < array[i](我们希望它是递增的)。如果这是真的,我们可以更新DP[i]的当前最优值。要找到数组的全局最优值,您可以从DP[0…]N - 1]。
int maxLength = 1, bestEnd = 0;
DP[0] = 1;
prev[0] = -1;
for (int i = 1; i < N; i++)
{
DP[i] = 1;
prev[i] = -1;
for (int j = i - 1; j >= 0; j--)
if (DP[j] + 1 > DP[i] && array[j] < array[i])
{
DP[i] = DP[j] + 1;
prev[i] = j;
}
if (DP[i] > maxLength)
{
bestEnd = i;
maxLength = DP[i];
}
}
我使用数组prev是为了以后能够找到实际的序列,而不仅仅是它的长度。只需在循环中使用prev[bestEnd]从bestEnd递归返回。-1值是停止的标志。
好了,现在来看更有效的O(nlog N)解:
设S[pos]定义为长度为pos的递增序列结束的最小整数。现在遍历输入集的每个整数X,并执行以下操作:
如果X >是S中的最后一个元素,那么将X附加到S的末尾,这本质上意味着我们已经找到了一个新的最大的LIS。 否则,找到S中最小的元素,即>= X,并将其改为X。 因为S在任何时候都是排序的,所以可以使用log(N)的二分搜索来找到元素。
总运行时间- N个整数,并对每个整数进行二进制搜索- N * log(N) = O(N log N)
现在我们来做一个真实的例子:
整数的集合: 2 6 3 4 1 2 9 5 8
步骤:
0. S = {} - Initialize S to the empty set
1. S = {2} - New largest LIS
2. S = {2, 6} - New largest LIS
3. S = {2, 3} - Changed 6 to 3
4. S = {2, 3, 4} - New largest LIS
5. S = {1, 3, 4} - Changed 2 to 1
6. S = {1, 2, 4} - Changed 3 to 2
7. S = {1, 2, 4, 9} - New largest LIS
8. S = {1, 2, 4, 5} - Changed 9 to 5
9. S = {1, 2, 4, 5, 8} - New largest LIS
所以LIS的长度是5 (S的大小)。
为了重建实际的LIS,我们将再次使用父数组。 设parent[i]是LIS中索引为i的元素的前身,该元素以索引为i的元素结束。
为了使事情更简单,我们可以在数组S中保留不是实际的整数,而是它们在集合中的下标(位置)。我们不保留{1,2,4,5,8},而是保留{4,5,3,7,8}。
即输入[4]= 1,输入[5]= 2,输入[3]= 4,输入[7]= 5,输入[8]= 8。
如果我们正确地更新父数组,实际的LIS是:
input[S[lastElementOfS]],
input[parent[S[lastElementOfS]]],
input[parent[parent[S[lastElementOfS]]]],
........................................
现在重要的是,我们如何更新父数组?有两种选择:
如果X >是S中的最后一个元素,那么parent[indexX] = indexLastElement。这意味着最新元素的父元素是最后一个元素。我们只是在S的末尾加上X。 否则,找到S中最小元素的索引>= than X,并将其更改为X。这里parent[indexX] = S[index - 1]。
其他回答
用Java签出包含数组元素的最长递增子序列的代码
http://ideone.com/Nd2eba
/**
** Java Program to implement Longest Increasing Subsequence Algorithm
**/
import java.util.Scanner;
/** Class LongestIncreasingSubsequence **/
class LongestIncreasingSubsequence
{
/** function lis **/
public int[] lis(int[] X)
{
int n = X.length - 1;
int[] M = new int[n + 1];
int[] P = new int[n + 1];
int L = 0;
for (int i = 1; i < n + 1; i++)
{
int j = 0;
/** Linear search applied here. Binary Search can be applied too.
binary search for the largest positive j <= L such that
X[M[j]] < X[i] (or set j = 0 if no such value exists) **/
for (int pos = L ; pos >= 1; pos--)
{
if (X[M[pos]] < X[i])
{
j = pos;
break;
}
}
P[i] = M[j];
if (j == L || X[i] < X[M[j + 1]])
{
M[j + 1] = i;
L = Math.max(L,j + 1);
}
}
/** backtrack **/
int[] result = new int[L];
int pos = M[L];
for (int i = L - 1; i >= 0; i--)
{
result[i] = X[pos];
pos = P[pos];
}
return result;
}
/** Main Function **/
public static void main(String[] args)
{
Scanner scan = new Scanner(System.in);
System.out.println("Longest Increasing Subsequence Algorithm Test\n");
System.out.println("Enter number of elements");
int n = scan.nextInt();
int[] arr = new int[n + 1];
System.out.println("\nEnter "+ n +" elements");
for (int i = 1; i <= n; i++)
arr[i] = scan.nextInt();
LongestIncreasingSubsequence obj = new LongestIncreasingSubsequence();
int[] result = obj.lis(arr);
/** print result **/
System.out.print("\nLongest Increasing Subsequence : ");
for (int i = 0; i < result.length; i++)
System.out.print(result[i] +" ");
System.out.println();
}
}
我已经在java中使用动态编程和记忆实现了LIS。随着代码,我做了复杂性计算,即为什么它是O(n Log(base2) n)。因为我觉得理论或逻辑解释是很好的,但实际演示总是更好的理解。
package com.company.dynamicProgramming;
import java.util.HashMap;
import java.util.Map;
public class LongestIncreasingSequence {
static int complexity = 0;
public static void main(String ...args){
int[] arr = {10, 22, 9, 33, 21, 50, 41, 60, 80};
int n = arr.length;
Map<Integer, Integer> memo = new HashMap<>();
lis(arr, n, memo);
//Display Code Begins
int x = 0;
System.out.format("Longest Increasing Sub-Sequence with size %S is -> ",memo.get(n));
for(Map.Entry e : memo.entrySet()){
if((Integer)e.getValue() > x){
System.out.print(arr[(Integer)e.getKey()-1] + " ");
x++;
}
}
System.out.format("%nAnd Time Complexity for Array size %S is just %S ", arr.length, complexity );
System.out.format( "%nWhich is equivalent to O(n Log n) i.e. %SLog(base2)%S is %S",arr.length,arr.length, arr.length * Math.ceil(Math.log(arr.length)/Math.log(2)));
//Display Code Ends
}
static int lis(int[] arr, int n, Map<Integer, Integer> memo){
if(n==1){
memo.put(1, 1);
return 1;
}
int lisAti;
int lisAtn = 1;
for(int i = 1; i < n; i++){
complexity++;
if(memo.get(i)!=null){
lisAti = memo.get(i);
}else {
lisAti = lis(arr, i, memo);
}
if(arr[i-1] < arr[n-1] && lisAti +1 > lisAtn){
lisAtn = lisAti +1;
}
}
memo.put(n, lisAtn);
return lisAtn;
}
}
当我运行上面的代码-
Longest Increasing Sub-Sequence with size 6 is -> 10 22 33 50 60 80
And Time Complexity for Array size 9 is just 36
Which is equivalent to O(n Log n) i.e. 9Log(base2)9 is 36.0
Process finished with exit code 0
求最长递增子序列的O(NLog(N))方法 让我们维护一个数组,其中第i个元素是一个大小为i的子序列可以结束的最小的数字。
我故意避免进一步的细节,因为投票最多的答案已经解释了它,但这种技术最终导致使用set数据结构的整洁实现(至少在c++中)。
下面是c++中的实现(假设需要严格增加最长子序列的大小)
#include <bits/stdc++.h> // gcc supported header to include (almost) everything
using namespace std;
typedef long long ll;
int main()
{
ll n;
cin >> n;
ll arr[n];
set<ll> S;
for(ll i=0; i<n; i++)
{
cin >> arr[i];
auto it = S.lower_bound(arr[i]);
if(it != S.end())
S.erase(it);
S.insert(arr[i]);
}
cout << S.size() << endl; // Size of the set is the required answer
return 0;
}
下面是从动态规划的角度评估问题的三个步骤:
递归定义:maxLength(i) == 1 + maxLength(j) where 0 < j < i and array[i] > array[j] 递归参数边界:可能有0到i - 1个子序列作为参数传递 求值顺序:由于是递增子序列,所以要从0求值到n
如果我们以序列{0,8,2,3,7,9}为例,at index:
我们会得到子序列{0}作为基本情况 [1]有一个新的子序列{0,8} [2]试图评估两个新的序列{0,8,2}和{0,2}通过添加元素在索引2到现有的子序列-只有一个是有效的,所以添加第三个可能的序列{0,2}只到参数列表 ...
下面是c++ 11的工作代码:
#include <iostream>
#include <vector>
int getLongestIncSub(const std::vector<int> &sequence, size_t index, std::vector<std::vector<int>> &sub) {
if(index == 0) {
sub.push_back(std::vector<int>{sequence[0]});
return 1;
}
size_t longestSubSeq = getLongestIncSub(sequence, index - 1, sub);
std::vector<std::vector<int>> tmpSubSeq;
for(std::vector<int> &subSeq : sub) {
if(subSeq[subSeq.size() - 1] < sequence[index]) {
std::vector<int> newSeq(subSeq);
newSeq.push_back(sequence[index]);
longestSubSeq = std::max(longestSubSeq, newSeq.size());
tmpSubSeq.push_back(newSeq);
}
}
std::copy(tmpSubSeq.begin(), tmpSubSeq.end(),
std::back_insert_iterator<std::vector<std::vector<int>>>(sub));
return longestSubSeq;
}
int getLongestIncSub(const std::vector<int> &sequence) {
std::vector<std::vector<int>> sub;
return getLongestIncSub(sequence, sequence.size() - 1, sub);
}
int main()
{
std::vector<int> seq{0, 8, 2, 3, 7, 9};
std::cout << getLongestIncSub(seq);
return 0;
}
def longestincrsub(arr1):
n=len(arr1)
l=[1]*n
for i in range(0,n):
for j in range(0,i) :
if arr1[j]<arr1[i] and l[i]<l[j] + 1:
l[i] =l[j] + 1
l.sort()
return l[-1]
arr1=[10,22,9,33,21,50,41,60]
a=longestincrsub(arr1)
print(a)
尽管有一种方法可以在O(nlogn)时间内解决这个问题(它在O(n²)时间内解决)但这种方法仍然提供了动态规划方法,这也是很好的。
推荐文章
- 有效的方法应用多个过滤器的熊猫数据框架或系列
- 哪些是遗传算法/遗传规划解决方案的好例子?
- 如何在O(n)中找到长度为n的无序数组中的第k大元素?
- 一个用于膨胀/收缩(抵消,缓冲)多边形的算法
- 我如何使用Node.js Crypto创建HMAC-SHA1哈希?
- 是否有一个装饰器来缓存函数返回值?
- 如何用动态规划确定最长递增子序列?
- 在c++程序中以编程方式检测字节序
- 理解递归
- 段树、区间树、二叉索引树和范围树之间有什么区别?
- 给定一个数字,找出下一个与原始数字具有完全相同的数字集的更高的数字
- HSL到RGB的颜色转换
- 使用Java在原语数组中查找最大/最小值
- 好的Java图算法库?
- foreach和map有区别吗?