我有一组整数。我想用动态规划的方法求出这个集合的最长递增子序列。
当前回答
我已经在java中使用动态编程和记忆实现了LIS。随着代码,我做了复杂性计算,即为什么它是O(n Log(base2) n)。因为我觉得理论或逻辑解释是很好的,但实际演示总是更好的理解。
package com.company.dynamicProgramming;
import java.util.HashMap;
import java.util.Map;
public class LongestIncreasingSequence {
static int complexity = 0;
public static void main(String ...args){
int[] arr = {10, 22, 9, 33, 21, 50, 41, 60, 80};
int n = arr.length;
Map<Integer, Integer> memo = new HashMap<>();
lis(arr, n, memo);
//Display Code Begins
int x = 0;
System.out.format("Longest Increasing Sub-Sequence with size %S is -> ",memo.get(n));
for(Map.Entry e : memo.entrySet()){
if((Integer)e.getValue() > x){
System.out.print(arr[(Integer)e.getKey()-1] + " ");
x++;
}
}
System.out.format("%nAnd Time Complexity for Array size %S is just %S ", arr.length, complexity );
System.out.format( "%nWhich is equivalent to O(n Log n) i.e. %SLog(base2)%S is %S",arr.length,arr.length, arr.length * Math.ceil(Math.log(arr.length)/Math.log(2)));
//Display Code Ends
}
static int lis(int[] arr, int n, Map<Integer, Integer> memo){
if(n==1){
memo.put(1, 1);
return 1;
}
int lisAti;
int lisAtn = 1;
for(int i = 1; i < n; i++){
complexity++;
if(memo.get(i)!=null){
lisAti = memo.get(i);
}else {
lisAti = lis(arr, i, memo);
}
if(arr[i-1] < arr[n-1] && lisAti +1 > lisAtn){
lisAtn = lisAti +1;
}
}
memo.put(n, lisAtn);
return lisAtn;
}
}
当我运行上面的代码-
Longest Increasing Sub-Sequence with size 6 is -> 10 22 33 50 60 80
And Time Complexity for Array size 9 is just 36
Which is equivalent to O(n Log n) i.e. 9Log(base2)9 is 36.0
Process finished with exit code 0
其他回答
c++中最简单的LIS解决方案,具有O(nlog(n))时间复杂度
#include <iostream>
#include "vector"
using namespace std;
// binary search (If value not found then it will return the index where the value should be inserted)
int ceilBinarySearch(vector<int> &a,int beg,int end,int value)
{
if(beg<=end)
{
int mid = (beg+end)/2;
if(a[mid] == value)
return mid;
else if(value < a[mid])
return ceilBinarySearch(a,beg,mid-1,value);
else
return ceilBinarySearch(a,mid+1,end,value);
return 0;
}
return beg;
}
int lis(vector<int> arr)
{
vector<int> dp(arr.size(),0);
int len = 0;
for(int i = 0;i<arr.size();i++)
{
int j = ceilBinarySearch(dp,0,len-1,arr[i]);
dp[j] = arr[i];
if(j == len)
len++;
}
return len;
}
int main()
{
vector<int> arr {2, 5,-1,0,6,1,2};
cout<<lis(arr);
return 0;
}
输出: 4
说到DP solution,我发现很奇怪的是没有人提到LIS可以简化为LCS。你所需要做的就是对原始序列的副本进行排序,删除所有重复的副本,然后对它们进行LCS。在伪代码中是:
def LIS(S):
T = sort(S)
T = removeDuplicates(T)
return LCS(S, T)
以及用Go语言编写的完整实现。如果你不需要重构解,你就不需要维护整个n^2 DP矩阵。
func lcs(arr1 []int) int {
arr2 := make([]int, len(arr1))
for i, v := range arr1 {
arr2[i] = v
}
sort.Ints(arr1)
arr3 := []int{}
prev := arr1[0] - 1
for _, v := range arr1 {
if v != prev {
prev = v
arr3 = append(arr3, v)
}
}
n1, n2 := len(arr1), len(arr3)
M := make([][]int, n2 + 1)
e := make([]int, (n1 + 1) * (n2 + 1))
for i := range M {
M[i] = e[i * (n1 + 1):(i + 1) * (n1 + 1)]
}
for i := 1; i <= n2; i++ {
for j := 1; j <= n1; j++ {
if arr2[j - 1] == arr3[i - 1] {
M[i][j] = M[i - 1][j - 1] + 1
} else if M[i - 1][j] > M[i][j - 1] {
M[i][j] = M[i - 1][j]
} else {
M[i][j] = M[i][j - 1]
}
}
}
return M[n2][n1]
}
好的,我先描述最简单的解也就是O(N²)N是集合的大小。还有一个O(N log N)解,我也会讲到。在高效算法一节中可以找到。
我假设数组的下标从0到N - 1。因此,让我们定义DP[i]为LIS(最长递增子序列)的长度,它结束于索引为i的元素。为了计算DP[i],我们查看所有索引j < i,并检查DP[j] + 1 > DP[i]和array[j] < array[i](我们希望它是递增的)。如果这是真的,我们可以更新DP[i]的当前最优值。要找到数组的全局最优值,您可以从DP[0…]N - 1]。
int maxLength = 1, bestEnd = 0;
DP[0] = 1;
prev[0] = -1;
for (int i = 1; i < N; i++)
{
DP[i] = 1;
prev[i] = -1;
for (int j = i - 1; j >= 0; j--)
if (DP[j] + 1 > DP[i] && array[j] < array[i])
{
DP[i] = DP[j] + 1;
prev[i] = j;
}
if (DP[i] > maxLength)
{
bestEnd = i;
maxLength = DP[i];
}
}
我使用数组prev是为了以后能够找到实际的序列,而不仅仅是它的长度。只需在循环中使用prev[bestEnd]从bestEnd递归返回。-1值是停止的标志。
好了,现在来看更有效的O(nlog N)解:
设S[pos]定义为长度为pos的递增序列结束的最小整数。现在遍历输入集的每个整数X,并执行以下操作:
如果X >是S中的最后一个元素,那么将X附加到S的末尾,这本质上意味着我们已经找到了一个新的最大的LIS。 否则,找到S中最小的元素,即>= X,并将其改为X。 因为S在任何时候都是排序的,所以可以使用log(N)的二分搜索来找到元素。
总运行时间- N个整数,并对每个整数进行二进制搜索- N * log(N) = O(N log N)
现在我们来做一个真实的例子:
整数的集合: 2 6 3 4 1 2 9 5 8
步骤:
0. S = {} - Initialize S to the empty set
1. S = {2} - New largest LIS
2. S = {2, 6} - New largest LIS
3. S = {2, 3} - Changed 6 to 3
4. S = {2, 3, 4} - New largest LIS
5. S = {1, 3, 4} - Changed 2 to 1
6. S = {1, 2, 4} - Changed 3 to 2
7. S = {1, 2, 4, 9} - New largest LIS
8. S = {1, 2, 4, 5} - Changed 9 to 5
9. S = {1, 2, 4, 5, 8} - New largest LIS
所以LIS的长度是5 (S的大小)。
为了重建实际的LIS,我们将再次使用父数组。 设parent[i]是LIS中索引为i的元素的前身,该元素以索引为i的元素结束。
为了使事情更简单,我们可以在数组S中保留不是实际的整数,而是它们在集合中的下标(位置)。我们不保留{1,2,4,5,8},而是保留{4,5,3,7,8}。
即输入[4]= 1,输入[5]= 2,输入[3]= 4,输入[7]= 5,输入[8]= 8。
如果我们正确地更新父数组,实际的LIS是:
input[S[lastElementOfS]],
input[parent[S[lastElementOfS]]],
input[parent[parent[S[lastElementOfS]]]],
........................................
现在重要的是,我们如何更新父数组?有两种选择:
如果X >是S中的最后一个元素,那么parent[indexX] = indexLastElement。这意味着最新元素的父元素是最后一个元素。我们只是在S的末尾加上X。 否则,找到S中最小元素的索引>= than X,并将其更改为X。这里parent[indexX] = S[index - 1]。
我已经在java中使用动态编程和记忆实现了LIS。随着代码,我做了复杂性计算,即为什么它是O(n Log(base2) n)。因为我觉得理论或逻辑解释是很好的,但实际演示总是更好的理解。
package com.company.dynamicProgramming;
import java.util.HashMap;
import java.util.Map;
public class LongestIncreasingSequence {
static int complexity = 0;
public static void main(String ...args){
int[] arr = {10, 22, 9, 33, 21, 50, 41, 60, 80};
int n = arr.length;
Map<Integer, Integer> memo = new HashMap<>();
lis(arr, n, memo);
//Display Code Begins
int x = 0;
System.out.format("Longest Increasing Sub-Sequence with size %S is -> ",memo.get(n));
for(Map.Entry e : memo.entrySet()){
if((Integer)e.getValue() > x){
System.out.print(arr[(Integer)e.getKey()-1] + " ");
x++;
}
}
System.out.format("%nAnd Time Complexity for Array size %S is just %S ", arr.length, complexity );
System.out.format( "%nWhich is equivalent to O(n Log n) i.e. %SLog(base2)%S is %S",arr.length,arr.length, arr.length * Math.ceil(Math.log(arr.length)/Math.log(2)));
//Display Code Ends
}
static int lis(int[] arr, int n, Map<Integer, Integer> memo){
if(n==1){
memo.put(1, 1);
return 1;
}
int lisAti;
int lisAtn = 1;
for(int i = 1; i < n; i++){
complexity++;
if(memo.get(i)!=null){
lisAti = memo.get(i);
}else {
lisAti = lis(arr, i, memo);
}
if(arr[i-1] < arr[n-1] && lisAti +1 > lisAtn){
lisAtn = lisAti +1;
}
}
memo.put(n, lisAtn);
return lisAtn;
}
}
当我运行上面的代码-
Longest Increasing Sub-Sequence with size 6 is -> 10 22 33 50 60 80
And Time Complexity for Array size 9 is just 36
Which is equivalent to O(n Log n) i.e. 9Log(base2)9 is 36.0
Process finished with exit code 0
def longestincrsub(arr1):
n=len(arr1)
l=[1]*n
for i in range(0,n):
for j in range(0,i) :
if arr1[j]<arr1[i] and l[i]<l[j] + 1:
l[i] =l[j] + 1
l.sort()
return l[-1]
arr1=[10,22,9,33,21,50,41,60]
a=longestincrsub(arr1)
print(a)
尽管有一种方法可以在O(nlogn)时间内解决这个问题(它在O(n²)时间内解决)但这种方法仍然提供了动态规划方法,这也是很好的。