我有一组整数。我想用动态规划的方法求出这个集合的最长递增子序列。


当前回答

这可以用动态规划在O(n²)中解决。同样的Python代码是这样的:-

def LIS(numlist):
    LS = [1]
    for i in range(1, len(numlist)):
        LS.append(1)
        for j in range(0, i):
            if numlist[i] > numlist[j] and LS[i]<=LS[j]:
                LS[i] = 1 + LS[j]
    print LS
    return max(LS)

numlist = map(int, raw_input().split(' '))
print LIS(numlist)

输入:5 19 5 81 50 28 29 1 83 23

输出将是:[1,2,1,3,3,3,4,1,5,3] 5

输出列表的list_index是输入列表的list_index。输出列表中给定list_index的值表示该list_index的最长递增子序列长度。

其他回答

说到DP solution,我发现很奇怪的是没有人提到LIS可以简化为LCS。你所需要做的就是对原始序列的副本进行排序,删除所有重复的副本,然后对它们进行LCS。在伪代码中是:

def LIS(S):
    T = sort(S)
    T = removeDuplicates(T)
    return LCS(S, T)

以及用Go语言编写的完整实现。如果你不需要重构解,你就不需要维护整个n^2 DP矩阵。

func lcs(arr1 []int) int {
    arr2 := make([]int, len(arr1))
    for i, v := range arr1 {
        arr2[i] = v
    }
    sort.Ints(arr1)
    arr3 := []int{}
    prev := arr1[0] - 1
    for _, v := range arr1 {
        if v != prev {
            prev = v
            arr3 = append(arr3, v)
        }
    }

    n1, n2 := len(arr1), len(arr3)

    M := make([][]int, n2 + 1)
    e := make([]int, (n1 + 1) * (n2 + 1))
    for i := range M {
        M[i] = e[i * (n1 + 1):(i + 1) * (n1 + 1)]
    }

    for i := 1; i <= n2; i++ {
        for j := 1; j <= n1; j++ {
            if arr2[j - 1] == arr3[i - 1] {
                M[i][j] = M[i - 1][j - 1] + 1
            } else if M[i - 1][j] > M[i][j - 1] {
                M[i][j] = M[i - 1][j]
            } else {
                M[i][j] = M[i][j - 1]
            }
        }
    }

    return M[n2][n1]
}

好的,我先描述最简单的解也就是O(N²)N是集合的大小。还有一个O(N log N)解,我也会讲到。在高效算法一节中可以找到。

我假设数组的下标从0到N - 1。因此,让我们定义DP[i]为LIS(最长递增子序列)的长度,它结束于索引为i的元素。为了计算DP[i],我们查看所有索引j < i,并检查DP[j] + 1 > DP[i]和array[j] < array[i](我们希望它是递增的)。如果这是真的,我们可以更新DP[i]的当前最优值。要找到数组的全局最优值,您可以从DP[0…]N - 1]。

int maxLength = 1, bestEnd = 0;
DP[0] = 1;
prev[0] = -1;

for (int i = 1; i < N; i++)
{
   DP[i] = 1;
   prev[i] = -1;

   for (int j = i - 1; j >= 0; j--)
      if (DP[j] + 1 > DP[i] && array[j] < array[i])
      {
         DP[i] = DP[j] + 1;
         prev[i] = j;
      }

   if (DP[i] > maxLength)
   {
      bestEnd = i;
      maxLength = DP[i];
   }
}

我使用数组prev是为了以后能够找到实际的序列,而不仅仅是它的长度。只需在循环中使用prev[bestEnd]从bestEnd递归返回。-1值是停止的标志。


好了,现在来看更有效的O(nlog N)解:

设S[pos]定义为长度为pos的递增序列结束的最小整数。现在遍历输入集的每个整数X,并执行以下操作:

如果X >是S中的最后一个元素,那么将X附加到S的末尾,这本质上意味着我们已经找到了一个新的最大的LIS。 否则,找到S中最小的元素,即>= X,并将其改为X。 因为S在任何时候都是排序的,所以可以使用log(N)的二分搜索来找到元素。

总运行时间- N个整数,并对每个整数进行二进制搜索- N * log(N) = O(N log N)

现在我们来做一个真实的例子:

整数的集合: 2 6 3 4 1 2 9 5 8

步骤:

0. S = {} - Initialize S to the empty set
1. S = {2} - New largest LIS
2. S = {2, 6} - New largest LIS
3. S = {2, 3} - Changed 6 to 3
4. S = {2, 3, 4} - New largest LIS
5. S = {1, 3, 4} - Changed 2 to 1
6. S = {1, 2, 4} - Changed 3 to 2
7. S = {1, 2, 4, 9} - New largest LIS
8. S = {1, 2, 4, 5} - Changed 9 to 5
9. S = {1, 2, 4, 5, 8} - New largest LIS

所以LIS的长度是5 (S的大小)。

为了重建实际的LIS,我们将再次使用父数组。 设parent[i]是LIS中索引为i的元素的前身,该元素以索引为i的元素结束。

为了使事情更简单,我们可以在数组S中保留不是实际的整数,而是它们在集合中的下标(位置)。我们不保留{1,2,4,5,8},而是保留{4,5,3,7,8}。

即输入[4]= 1,输入[5]= 2,输入[3]= 4,输入[7]= 5,输入[8]= 8。

如果我们正确地更新父数组,实际的LIS是:

input[S[lastElementOfS]], 
input[parent[S[lastElementOfS]]],
input[parent[parent[S[lastElementOfS]]]],
........................................

现在重要的是,我们如何更新父数组?有两种选择:

如果X >是S中的最后一个元素,那么parent[indexX] = indexLastElement。这意味着最新元素的父元素是最后一个元素。我们只是在S的末尾加上X。 否则,找到S中最小元素的索引>= than X,并将其更改为X。这里parent[indexX] = S[index - 1]。

下面是O(n^2)算法的Scala实现:

object Solve {
  def longestIncrSubseq[T](xs: List[T])(implicit ord: Ordering[T]) = {
    xs.foldLeft(List[(Int, List[T])]()) {
      (sofar, x) =>
        if (sofar.isEmpty) List((1, List(x)))
        else {
          val resIfEndsAtCurr = (sofar, xs).zipped map {
            (tp, y) =>
              val len = tp._1
              val seq = tp._2
              if (ord.lteq(y, x)) {
                (len + 1, x :: seq) // reversely recorded to avoid O(n)
              } else {
                (1, List(x))
              }
          }
          sofar :+ resIfEndsAtCurr.maxBy(_._1)
        }
    }.maxBy(_._1)._2.reverse
  }

  def main(args: Array[String]) = {
    println(longestIncrSubseq(List(
      0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15)))
  }
}

我已经在java中使用动态编程和记忆实现了LIS。随着代码,我做了复杂性计算,即为什么它是O(n Log(base2) n)。因为我觉得理论或逻辑解释是很好的,但实际演示总是更好的理解。

package com.company.dynamicProgramming;

import java.util.HashMap;
import java.util.Map;

public class LongestIncreasingSequence {

    static int complexity = 0;

    public static void main(String ...args){


        int[] arr = {10, 22, 9, 33, 21, 50, 41, 60, 80};
        int n = arr.length;

        Map<Integer, Integer> memo = new HashMap<>();

        lis(arr, n, memo);

        //Display Code Begins
        int x = 0;
        System.out.format("Longest Increasing Sub-Sequence with size %S is -> ",memo.get(n));
        for(Map.Entry e : memo.entrySet()){

            if((Integer)e.getValue() > x){
                System.out.print(arr[(Integer)e.getKey()-1] + " ");
                x++;
            }
        }
        System.out.format("%nAnd Time Complexity for Array size %S is just %S ", arr.length, complexity );
        System.out.format( "%nWhich is equivalent to O(n Log n) i.e. %SLog(base2)%S is %S",arr.length,arr.length, arr.length * Math.ceil(Math.log(arr.length)/Math.log(2)));
        //Display Code Ends

    }



    static int lis(int[] arr, int n, Map<Integer, Integer> memo){

        if(n==1){
            memo.put(1, 1);
            return 1;
        }

        int lisAti;
        int lisAtn = 1;

        for(int i = 1; i < n; i++){
            complexity++;

            if(memo.get(i)!=null){
                lisAti = memo.get(i);
            }else {
                lisAti = lis(arr, i, memo);
            }

            if(arr[i-1] < arr[n-1] && lisAti +1 > lisAtn){
                lisAtn = lisAti +1;
            }
        }

        memo.put(n, lisAtn);
        return lisAtn;

    }
}

当我运行上面的代码-

Longest Increasing Sub-Sequence with size 6 is -> 10 22 33 50 60 80 
And Time Complexity for Array size 9 is just 36 
Which is equivalent to O(n Log n) i.e. 9Log(base2)9 is 36.0
Process finished with exit code 0

O(n²)java实现:

void LIS(int arr[]){
        int maxCount[]=new int[arr.length];
        int link[]=new int[arr.length];
        int maxI=0;
        link[0]=0;
        maxCount[0]=0;

        for (int i = 1; i < arr.length; i++) {
            for (int j = 0; j < i; j++) {
                if(arr[j]<arr[i] && ((maxCount[j]+1)>maxCount[i])){
                    maxCount[i]=maxCount[j]+1;
                    link[i]=j;
                    if(maxCount[i]>maxCount[maxI]){
                        maxI=i;
                    }
                }
            }
        }


        for (int i = 0; i < link.length; i++) {
            System.out.println(arr[i]+"   "+link[i]);
        }
        print(arr,maxI,link);

    }

    void print(int arr[],int index,int link[]){
        if(link[index]==index){
            System.out.println(arr[index]+" ");
            return;
        }else{
            print(arr, link[index], link);
            System.out.println(arr[index]+" ");
        }
    }