我有一组整数。我想用动态规划的方法求出这个集合的最长递增子序列。


当前回答

c++中最简单的LIS解决方案,具有O(nlog(n))时间复杂度

#include <iostream>
#include "vector"
using namespace std;

// binary search (If value not found then it will return the index where the value should be inserted)
int ceilBinarySearch(vector<int> &a,int beg,int end,int value)
{
    if(beg<=end)
    {
        int mid = (beg+end)/2;
        if(a[mid] == value)
            return mid;
        else if(value < a[mid])
            return ceilBinarySearch(a,beg,mid-1,value);
        else
            return ceilBinarySearch(a,mid+1,end,value);

    return 0;
    }

    return beg;

}
int lis(vector<int> arr)
{
    vector<int> dp(arr.size(),0);
    int len = 0;
    for(int i = 0;i<arr.size();i++)
    {
        int j = ceilBinarySearch(dp,0,len-1,arr[i]);
        dp[j] = arr[i];
        if(j == len)
            len++;

    }
    return len;
}

int main()
{
    vector<int> arr  {2, 5,-1,0,6,1,2};
    cout<<lis(arr);
    return 0;
}

输出: 4

其他回答

这是另一个O(n²)JAVA实现。不需要递归/记忆来生成实际的子序列。只是一个字符串数组,存储每个阶段的实际LIS和一个数组,存储每个元素的LIS的长度。非常简单。看看吧:

import java.io.BufferedReader;
import java.io.InputStreamReader;

/**
 * Created by Shreyans on 4/16/2015
 */

class LNG_INC_SUB//Longest Increasing Subsequence
{
    public static void main(String[] args) throws Exception
    {
        BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
        System.out.println("Enter Numbers Separated by Spaces to find their LIS\n");
        String[] s1=br.readLine().split(" ");
        int n=s1.length;
        int[] a=new int[n];//Array actual of Numbers
        String []ls=new String[n];// Array of Strings to maintain LIS for every element
        for(int i=0;i<n;i++)
        {
            a[i]=Integer.parseInt(s1[i]);
        }
        int[]dp=new int[n];//Storing length of max subseq.
        int max=dp[0]=1;//Defaults
        String seq=ls[0]=s1[0];//Defaults
        for(int i=1;i<n;i++)
        {
            dp[i]=1;
            String x="";
            for(int j=i-1;j>=0;j--)
            {
                //First check if number at index j is less than num at i.
                // Second the length of that DP should be greater than dp[i]
                // -1 since dp of previous could also be one. So we compare the dp[i] as empty initially
                if(a[j]<a[i]&&dp[j]>dp[i]-1)
                {
                    dp[i]=dp[j]+1;//Assigning temp length of LIS. There may come along a bigger LIS of a future a[j]
                    x=ls[j];//Assigning temp LIS of a[j]. Will append a[i] later on
                }
            }
            x+=(" "+a[i]);
            ls[i]=x;
            if(dp[i]>max)
            {
                max=dp[i];
                seq=ls[i];
            }
        }
        System.out.println("Length of LIS is: " + max + "\nThe Sequence is: " + seq);
    }
}

实际代码:http://ideone.com/sBiOQx

O(n²)java实现:

void LIS(int arr[]){
        int maxCount[]=new int[arr.length];
        int link[]=new int[arr.length];
        int maxI=0;
        link[0]=0;
        maxCount[0]=0;

        for (int i = 1; i < arr.length; i++) {
            for (int j = 0; j < i; j++) {
                if(arr[j]<arr[i] && ((maxCount[j]+1)>maxCount[i])){
                    maxCount[i]=maxCount[j]+1;
                    link[i]=j;
                    if(maxCount[i]>maxCount[maxI]){
                        maxI=i;
                    }
                }
            }
        }


        for (int i = 0; i < link.length; i++) {
            System.out.println(arr[i]+"   "+link[i]);
        }
        print(arr,maxI,link);

    }

    void print(int arr[],int index,int link[]){
        if(link[index]==index){
            System.out.println(arr[index]+" ");
            return;
        }else{
            print(arr, link[index], link);
            System.out.println(arr[index]+" ");
        }
    }

这是一个O(n²)的Java实现。我只是没有使用二分搜索来找到S中最小的元素,它是>= than x,我只是使用了一个for循环。使用二分搜索将使复杂度为O(n logn)

public static void olis(int[] seq){

    int[] memo = new int[seq.length];

    memo[0] = seq[0];
    int pos = 0;

    for (int i=1; i<seq.length; i++){

        int x = seq[i];

            if (memo[pos] < x){ 
                pos++;
                memo[pos] = x;
            } else {

                for(int j=0; j<=pos; j++){
                    if (memo[j] >= x){
                        memo[j] = x;
                        break;
                    }
                }
            }
            //just to print every step
            System.out.println(Arrays.toString(memo));
    }

    //the final array with the LIS
    System.out.println(Arrays.toString(memo));
    System.out.println("The length of lis is " + (pos + 1));

}

说到DP solution,我发现很奇怪的是没有人提到LIS可以简化为LCS。你所需要做的就是对原始序列的副本进行排序,删除所有重复的副本,然后对它们进行LCS。在伪代码中是:

def LIS(S):
    T = sort(S)
    T = removeDuplicates(T)
    return LCS(S, T)

以及用Go语言编写的完整实现。如果你不需要重构解,你就不需要维护整个n^2 DP矩阵。

func lcs(arr1 []int) int {
    arr2 := make([]int, len(arr1))
    for i, v := range arr1 {
        arr2[i] = v
    }
    sort.Ints(arr1)
    arr3 := []int{}
    prev := arr1[0] - 1
    for _, v := range arr1 {
        if v != prev {
            prev = v
            arr3 = append(arr3, v)
        }
    }

    n1, n2 := len(arr1), len(arr3)

    M := make([][]int, n2 + 1)
    e := make([]int, (n1 + 1) * (n2 + 1))
    for i := range M {
        M[i] = e[i * (n1 + 1):(i + 1) * (n1 + 1)]
    }

    for i := 1; i <= n2; i++ {
        for j := 1; j <= n1; j++ {
            if arr2[j - 1] == arr3[i - 1] {
                M[i][j] = M[i - 1][j - 1] + 1
            } else if M[i - 1][j] > M[i][j - 1] {
                M[i][j] = M[i - 1][j]
            } else {
                M[i][j] = M[i][j - 1]
            }
        }
    }

    return M[n2][n1]
}

用Java签出包含数组元素的最长递增子序列的代码

http://ideone.com/Nd2eba

/**
 **    Java Program to implement Longest Increasing Subsequence Algorithm
 **/

import java.util.Scanner;

/** Class  LongestIncreasingSubsequence **/
 class  LongestIncreasingSubsequence
{
    /** function lis **/
    public int[] lis(int[] X)
    {        
        int n = X.length - 1;
        int[] M = new int[n + 1];  
        int[] P = new int[n + 1]; 
        int L = 0;

        for (int i = 1; i < n + 1; i++)
        {
            int j = 0;

            /** Linear search applied here. Binary Search can be applied too.
                binary search for the largest positive j <= L such that 
                X[M[j]] < X[i] (or set j = 0 if no such value exists) **/

            for (int pos = L ; pos >= 1; pos--)
            {
                if (X[M[pos]] < X[i])
                {
                    j = pos;
                    break;
                }
            }            
            P[i] = M[j];
            if (j == L || X[i] < X[M[j + 1]])
            {
                M[j + 1] = i;
                L = Math.max(L,j + 1);
            }
        }

        /** backtrack **/

        int[] result = new int[L];
        int pos = M[L];
        for (int i = L - 1; i >= 0; i--)
        {
            result[i] = X[pos];
            pos = P[pos];
        }
        return result;             
    }

    /** Main Function **/
    public static void main(String[] args) 
    {    
        Scanner scan = new Scanner(System.in);
        System.out.println("Longest Increasing Subsequence Algorithm Test\n");

        System.out.println("Enter number of elements");
        int n = scan.nextInt();
        int[] arr = new int[n + 1];
        System.out.println("\nEnter "+ n +" elements");
        for (int i = 1; i <= n; i++)
            arr[i] = scan.nextInt();

        LongestIncreasingSubsequence obj = new LongestIncreasingSubsequence(); 
        int[] result = obj.lis(arr);       

        /** print result **/ 

        System.out.print("\nLongest Increasing Subsequence : ");
        for (int i = 0; i < result.length; i++)
            System.out.print(result[i] +" ");
        System.out.println();
    }
}