我有一组整数。我想用动态规划的方法求出这个集合的最长递增子序列。
当前回答
最长递增子序列(Java)
import java.util.*;
class ChainHighestValue implements Comparable<ChainHighestValue>{
int highestValue;
int chainLength;
ChainHighestValue(int highestValue,int chainLength) {
this.highestValue = highestValue;
this.chainLength = chainLength;
}
@Override
public int compareTo(ChainHighestValue o) {
return this.chainLength-o.chainLength;
}
}
public class LongestIncreasingSubsequenceLinkedList {
private static LinkedList<Integer> LongestSubsequent(int arr[], int size){
ArrayList<LinkedList<Integer>> seqList=new ArrayList<>();
ArrayList<ChainHighestValue> valuePairs=new ArrayList<>();
for(int i=0;i<size;i++){
int currValue=arr[i];
if(valuePairs.size()==0){
LinkedList<Integer> aList=new LinkedList<>();
aList.add(arr[i]);
seqList.add(aList);
valuePairs.add(new ChainHighestValue(arr[i],1));
}else{
try{
ChainHighestValue heighestIndex=valuePairs.stream().filter(e->e.highestValue<currValue).max(ChainHighestValue::compareTo).get();
int index=valuePairs.indexOf(heighestIndex);
seqList.get(index).add(arr[i]);
heighestIndex.highestValue=arr[i];
heighestIndex.chainLength+=1;
}catch (Exception e){
LinkedList<Integer> aList=new LinkedList<>();
aList.add(arr[i]);
seqList.add(aList);
valuePairs.add(new ChainHighestValue(arr[i],1));
}
}
}
ChainHighestValue heighestIndex=valuePairs.stream().max(ChainHighestValue::compareTo).get();
int index=valuePairs.indexOf(heighestIndex);
return seqList.get(index);
}
public static void main(String[] args){
int arry[]={5,1,3,6,11,30,32,5,3,73,79};
//int arryB[]={3,1,5,2,6,4,9};
LinkedList<Integer> LIS=LongestSubsequent(arry, arry.length);
System.out.println("Longest Incrementing Subsequence:");
for(Integer a: LIS){
System.out.print(a+" ");
}
}
}
其他回答
这里是java O(nlogn)的实现
import java.util.Scanner;
public class LongestIncreasingSeq {
private static int binarySearch(int table[],int a,int len){
int end = len-1;
int beg = 0;
int mid = 0;
int result = -1;
while(beg <= end){
mid = (end + beg) / 2;
if(table[mid] < a){
beg=mid+1;
result = mid;
}else if(table[mid] == a){
return len-1;
}else{
end = mid-1;
}
}
return result;
}
public static void main(String[] args) {
// int[] t = {1, 2, 5,9,16};
// System.out.println(binarySearch(t , 9, 5));
Scanner in = new Scanner(System.in);
int size = in.nextInt();//4;
int A[] = new int[size];
int table[] = new int[A.length];
int k = 0;
while(k<size){
A[k++] = in.nextInt();
if(k<size-1)
in.nextLine();
}
table[0] = A[0];
int len = 1;
for (int i = 1; i < A.length; i++) {
if(table[0] > A[i]){
table[0] = A[i];
}else if(table[len-1]<A[i]){
table[len++]=A[i];
}else{
table[binarySearch(table, A[i],len)+1] = A[i];
}
}
System.out.println(len);
}
}
//可以使用TreeSet
这可以用动态规划在O(n²)中解决。同样的Python代码是这样的:-
def LIS(numlist):
LS = [1]
for i in range(1, len(numlist)):
LS.append(1)
for j in range(0, i):
if numlist[i] > numlist[j] and LS[i]<=LS[j]:
LS[i] = 1 + LS[j]
print LS
return max(LS)
numlist = map(int, raw_input().split(' '))
print LIS(numlist)
输入:5 19 5 81 50 28 29 1 83 23
输出将是:[1,2,1,3,3,3,4,1,5,3] 5
输出列表的list_index是输入列表的list_index。输出列表中给定list_index的值表示该list_index的最长递增子序列长度。
下面是O(n^2)算法的Scala实现:
object Solve {
def longestIncrSubseq[T](xs: List[T])(implicit ord: Ordering[T]) = {
xs.foldLeft(List[(Int, List[T])]()) {
(sofar, x) =>
if (sofar.isEmpty) List((1, List(x)))
else {
val resIfEndsAtCurr = (sofar, xs).zipped map {
(tp, y) =>
val len = tp._1
val seq = tp._2
if (ord.lteq(y, x)) {
(len + 1, x :: seq) // reversely recorded to avoid O(n)
} else {
(1, List(x))
}
}
sofar :+ resIfEndsAtCurr.maxBy(_._1)
}
}.maxBy(_._1)._2.reverse
}
def main(args: Array[String]) = {
println(longestIncrSubseq(List(
0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15)))
}
}
下面是从动态规划的角度评估问题的三个步骤:
递归定义:maxLength(i) == 1 + maxLength(j) where 0 < j < i and array[i] > array[j] 递归参数边界:可能有0到i - 1个子序列作为参数传递 求值顺序:由于是递增子序列,所以要从0求值到n
如果我们以序列{0,8,2,3,7,9}为例,at index:
我们会得到子序列{0}作为基本情况 [1]有一个新的子序列{0,8} [2]试图评估两个新的序列{0,8,2}和{0,2}通过添加元素在索引2到现有的子序列-只有一个是有效的,所以添加第三个可能的序列{0,2}只到参数列表 ...
下面是c++ 11的工作代码:
#include <iostream>
#include <vector>
int getLongestIncSub(const std::vector<int> &sequence, size_t index, std::vector<std::vector<int>> &sub) {
if(index == 0) {
sub.push_back(std::vector<int>{sequence[0]});
return 1;
}
size_t longestSubSeq = getLongestIncSub(sequence, index - 1, sub);
std::vector<std::vector<int>> tmpSubSeq;
for(std::vector<int> &subSeq : sub) {
if(subSeq[subSeq.size() - 1] < sequence[index]) {
std::vector<int> newSeq(subSeq);
newSeq.push_back(sequence[index]);
longestSubSeq = std::max(longestSubSeq, newSeq.size());
tmpSubSeq.push_back(newSeq);
}
}
std::copy(tmpSubSeq.begin(), tmpSubSeq.end(),
std::back_insert_iterator<std::vector<std::vector<int>>>(sub));
return longestSubSeq;
}
int getLongestIncSub(const std::vector<int> &sequence) {
std::vector<std::vector<int>> sub;
return getLongestIncSub(sequence, sequence.size() - 1, sub);
}
int main()
{
std::vector<int> seq{0, 8, 2, 3, 7, 9};
std::cout << getLongestIncSub(seq);
return 0;
}
求最长递增子序列的O(NLog(N))方法 让我们维护一个数组,其中第i个元素是一个大小为i的子序列可以结束的最小的数字。
我故意避免进一步的细节,因为投票最多的答案已经解释了它,但这种技术最终导致使用set数据结构的整洁实现(至少在c++中)。
下面是c++中的实现(假设需要严格增加最长子序列的大小)
#include <bits/stdc++.h> // gcc supported header to include (almost) everything
using namespace std;
typedef long long ll;
int main()
{
ll n;
cin >> n;
ll arr[n];
set<ll> S;
for(ll i=0; i<n; i++)
{
cin >> arr[i];
auto it = S.lower_bound(arr[i]);
if(it != S.end())
S.erase(it);
S.insert(arr[i]);
}
cout << S.size() << endl; // Size of the set is the required answer
return 0;
}