我有一组整数。我想用动态规划的方法求出这个集合的最长递增子序列。
当前回答
O(n²)java实现:
void LIS(int arr[]){
int maxCount[]=new int[arr.length];
int link[]=new int[arr.length];
int maxI=0;
link[0]=0;
maxCount[0]=0;
for (int i = 1; i < arr.length; i++) {
for (int j = 0; j < i; j++) {
if(arr[j]<arr[i] && ((maxCount[j]+1)>maxCount[i])){
maxCount[i]=maxCount[j]+1;
link[i]=j;
if(maxCount[i]>maxCount[maxI]){
maxI=i;
}
}
}
}
for (int i = 0; i < link.length; i++) {
System.out.println(arr[i]+" "+link[i]);
}
print(arr,maxI,link);
}
void print(int arr[],int index,int link[]){
if(link[index]==index){
System.out.println(arr[index]+" ");
return;
}else{
print(arr, link[index], link);
System.out.println(arr[index]+" ");
}
}
其他回答
下面的c++实现还包括一些使用名为prev的数组构建实际最长递增子序列的代码。
std::vector<int> longest_increasing_subsequence (const std::vector<int>& s)
{
int best_end = 0;
int sz = s.size();
if (!sz)
return std::vector<int>();
std::vector<int> prev(sz,-1);
std::vector<int> memo(sz, 0);
int max_length = std::numeric_limits<int>::min();
memo[0] = 1;
for ( auto i = 1; i < sz; ++i)
{
for ( auto j = 0; j < i; ++j)
{
if ( s[j] < s[i] && memo[i] < memo[j] + 1 )
{
memo[i] = memo[j] + 1;
prev[i] = j;
}
}
if ( memo[i] > max_length )
{
best_end = i;
max_length = memo[i];
}
}
// Code that builds the longest increasing subsequence using "prev"
std::vector<int> results;
results.reserve(sz);
std::stack<int> stk;
int current = best_end;
while (current != -1)
{
stk.push(s[current]);
current = prev[current];
}
while (!stk.empty())
{
results.push_back(stk.top());
stk.pop();
}
return results;
}
没有堆栈的实现只是反转向量
#include <iostream>
#include <vector>
#include <limits>
std::vector<int> LIS( const std::vector<int> &v ) {
auto sz = v.size();
if(!sz)
return v;
std::vector<int> memo(sz, 0);
std::vector<int> prev(sz, -1);
memo[0] = 1;
int best_end = 0;
int max_length = std::numeric_limits<int>::min();
for (auto i = 1; i < sz; ++i) {
for ( auto j = 0; j < i ; ++j) {
if (s[j] < s[i] && memo[i] < memo[j] + 1) {
memo[i] = memo[j] + 1;
prev[i] = j;
}
}
if(memo[i] > max_length) {
best_end = i;
max_length = memo[i];
}
}
// create results
std::vector<int> results;
results.reserve(v.size());
auto current = best_end;
while (current != -1) {
results.push_back(s[current]);
current = prev[current];
}
std::reverse(results.begin(), results.end());
return results;
}
我已经在java中使用动态编程和记忆实现了LIS。随着代码,我做了复杂性计算,即为什么它是O(n Log(base2) n)。因为我觉得理论或逻辑解释是很好的,但实际演示总是更好的理解。
package com.company.dynamicProgramming;
import java.util.HashMap;
import java.util.Map;
public class LongestIncreasingSequence {
static int complexity = 0;
public static void main(String ...args){
int[] arr = {10, 22, 9, 33, 21, 50, 41, 60, 80};
int n = arr.length;
Map<Integer, Integer> memo = new HashMap<>();
lis(arr, n, memo);
//Display Code Begins
int x = 0;
System.out.format("Longest Increasing Sub-Sequence with size %S is -> ",memo.get(n));
for(Map.Entry e : memo.entrySet()){
if((Integer)e.getValue() > x){
System.out.print(arr[(Integer)e.getKey()-1] + " ");
x++;
}
}
System.out.format("%nAnd Time Complexity for Array size %S is just %S ", arr.length, complexity );
System.out.format( "%nWhich is equivalent to O(n Log n) i.e. %SLog(base2)%S is %S",arr.length,arr.length, arr.length * Math.ceil(Math.log(arr.length)/Math.log(2)));
//Display Code Ends
}
static int lis(int[] arr, int n, Map<Integer, Integer> memo){
if(n==1){
memo.put(1, 1);
return 1;
}
int lisAti;
int lisAtn = 1;
for(int i = 1; i < n; i++){
complexity++;
if(memo.get(i)!=null){
lisAti = memo.get(i);
}else {
lisAti = lis(arr, i, memo);
}
if(arr[i-1] < arr[n-1] && lisAti +1 > lisAtn){
lisAtn = lisAti +1;
}
}
memo.put(n, lisAtn);
return lisAtn;
}
}
当我运行上面的代码-
Longest Increasing Sub-Sequence with size 6 is -> 10 22 33 50 60 80
And Time Complexity for Array size 9 is just 36
Which is equivalent to O(n Log n) i.e. 9Log(base2)9 is 36.0
Process finished with exit code 0
c++中最简单的LIS解决方案,具有O(nlog(n))时间复杂度
#include <iostream>
#include "vector"
using namespace std;
// binary search (If value not found then it will return the index where the value should be inserted)
int ceilBinarySearch(vector<int> &a,int beg,int end,int value)
{
if(beg<=end)
{
int mid = (beg+end)/2;
if(a[mid] == value)
return mid;
else if(value < a[mid])
return ceilBinarySearch(a,beg,mid-1,value);
else
return ceilBinarySearch(a,mid+1,end,value);
return 0;
}
return beg;
}
int lis(vector<int> arr)
{
vector<int> dp(arr.size(),0);
int len = 0;
for(int i = 0;i<arr.size();i++)
{
int j = ceilBinarySearch(dp,0,len-1,arr[i]);
dp[j] = arr[i];
if(j == len)
len++;
}
return len;
}
int main()
{
vector<int> arr {2, 5,-1,0,6,1,2};
cout<<lis(arr);
return 0;
}
输出: 4
O(n²)java实现:
void LIS(int arr[]){
int maxCount[]=new int[arr.length];
int link[]=new int[arr.length];
int maxI=0;
link[0]=0;
maxCount[0]=0;
for (int i = 1; i < arr.length; i++) {
for (int j = 0; j < i; j++) {
if(arr[j]<arr[i] && ((maxCount[j]+1)>maxCount[i])){
maxCount[i]=maxCount[j]+1;
link[i]=j;
if(maxCount[i]>maxCount[maxI]){
maxI=i;
}
}
}
}
for (int i = 0; i < link.length; i++) {
System.out.println(arr[i]+" "+link[i]);
}
print(arr,maxI,link);
}
void print(int arr[],int index,int link[]){
if(link[index]==index){
System.out.println(arr[index]+" ");
return;
}else{
print(arr, link[index], link);
System.out.println(arr[index]+" ");
}
}
def longestincrsub(arr1):
n=len(arr1)
l=[1]*n
for i in range(0,n):
for j in range(0,i) :
if arr1[j]<arr1[i] and l[i]<l[j] + 1:
l[i] =l[j] + 1
l.sort()
return l[-1]
arr1=[10,22,9,33,21,50,41,60]
a=longestincrsub(arr1)
print(a)
尽管有一种方法可以在O(nlogn)时间内解决这个问题(它在O(n²)时间内解决)但这种方法仍然提供了动态规划方法,这也是很好的。