我有一组整数。我想用动态规划的方法求出这个集合的最长递增子序列。


当前回答

这是我的Leetcode解决方案使用二进制搜索:->

class Solution:
    def binary_search(self,s,x):
        low=0
        high=len(s)-1
        flag=1
        while low<=high:
              mid=(high+low)//2
              if s[mid]==x:
                 flag=0
                 break
              elif s[mid]<x:
                  low=mid+1
              else:
                 high=mid-1
        if flag:
           s[low]=x
        return s

    def lengthOfLIS(self, nums: List[int]) -> int:
         if not nums:
            return 0
         s=[]
         s.append(nums[0])
         for i in range(1,len(nums)):
             if s[-1]<nums[i]:
                s.append(nums[i])
             else:
                 s=self.binary_search(s,nums[i])
         return len(s)

其他回答

最长递增子序列(Java)

import java.util.*;

class ChainHighestValue implements Comparable<ChainHighestValue>{
    int highestValue;
    int chainLength;
    ChainHighestValue(int highestValue,int chainLength) {
        this.highestValue = highestValue;
        this.chainLength = chainLength;
    }
    @Override
    public int compareTo(ChainHighestValue o) {
       return this.chainLength-o.chainLength;
    }

}


public class LongestIncreasingSubsequenceLinkedList {


    private static LinkedList<Integer> LongestSubsequent(int arr[], int size){
        ArrayList<LinkedList<Integer>> seqList=new ArrayList<>();
        ArrayList<ChainHighestValue> valuePairs=new ArrayList<>();
        for(int i=0;i<size;i++){
            int currValue=arr[i];
            if(valuePairs.size()==0){
                LinkedList<Integer> aList=new LinkedList<>();
                aList.add(arr[i]);
                seqList.add(aList);
                valuePairs.add(new ChainHighestValue(arr[i],1));

            }else{
                try{
                    ChainHighestValue heighestIndex=valuePairs.stream().filter(e->e.highestValue<currValue).max(ChainHighestValue::compareTo).get();
                    int index=valuePairs.indexOf(heighestIndex);
                    seqList.get(index).add(arr[i]);
                    heighestIndex.highestValue=arr[i];
                    heighestIndex.chainLength+=1;

                }catch (Exception e){
                    LinkedList<Integer> aList=new LinkedList<>();
                    aList.add(arr[i]);
                    seqList.add(aList);
                    valuePairs.add(new ChainHighestValue(arr[i],1));
                }
            }
        }
        ChainHighestValue heighestIndex=valuePairs.stream().max(ChainHighestValue::compareTo).get();
        int index=valuePairs.indexOf(heighestIndex);
        return seqList.get(index);
    }

    public static void main(String[] args){
        int arry[]={5,1,3,6,11,30,32,5,3,73,79};
        //int arryB[]={3,1,5,2,6,4,9};
        LinkedList<Integer> LIS=LongestSubsequent(arry, arry.length);
        System.out.println("Longest Incrementing Subsequence:");
        for(Integer a: LIS){
            System.out.print(a+" ");
        }

    }
}

这是我的Leetcode解决方案使用二进制搜索:->

class Solution:
    def binary_search(self,s,x):
        low=0
        high=len(s)-1
        flag=1
        while low<=high:
              mid=(high+low)//2
              if s[mid]==x:
                 flag=0
                 break
              elif s[mid]<x:
                  low=mid+1
              else:
                 high=mid-1
        if flag:
           s[low]=x
        return s

    def lengthOfLIS(self, nums: List[int]) -> int:
         if not nums:
            return 0
         s=[]
         s.append(nums[0])
         for i in range(1,len(nums)):
             if s[-1]<nums[i]:
                s.append(nums[i])
             else:
                 s=self.binary_search(s,nums[i])
         return len(s)

下面是从动态规划的角度评估问题的三个步骤:

递归定义:maxLength(i) == 1 + maxLength(j) where 0 < j < i and array[i] > array[j] 递归参数边界:可能有0到i - 1个子序列作为参数传递 求值顺序:由于是递增子序列,所以要从0求值到n

如果我们以序列{0,8,2,3,7,9}为例,at index:

我们会得到子序列{0}作为基本情况 [1]有一个新的子序列{0,8} [2]试图评估两个新的序列{0,8,2}和{0,2}通过添加元素在索引2到现有的子序列-只有一个是有效的,所以添加第三个可能的序列{0,2}只到参数列表 ...

下面是c++ 11的工作代码:

#include <iostream>
#include <vector>

int getLongestIncSub(const std::vector<int> &sequence, size_t index, std::vector<std::vector<int>> &sub) {
    if(index == 0) {
        sub.push_back(std::vector<int>{sequence[0]});
        return 1;
    }

    size_t longestSubSeq = getLongestIncSub(sequence, index - 1, sub);
    std::vector<std::vector<int>> tmpSubSeq;
    for(std::vector<int> &subSeq : sub) {
        if(subSeq[subSeq.size() - 1] < sequence[index]) {
            std::vector<int> newSeq(subSeq);
            newSeq.push_back(sequence[index]);
            longestSubSeq = std::max(longestSubSeq, newSeq.size());
            tmpSubSeq.push_back(newSeq);
        }
    }
    std::copy(tmpSubSeq.begin(), tmpSubSeq.end(),
              std::back_insert_iterator<std::vector<std::vector<int>>>(sub));

    return longestSubSeq;
}

int getLongestIncSub(const std::vector<int> &sequence) {
    std::vector<std::vector<int>> sub;
    return getLongestIncSub(sequence, sequence.size() - 1, sub);
}

int main()
{
    std::vector<int> seq{0, 8, 2, 3, 7, 9};
    std::cout << getLongestIncSub(seq);
    return 0;
}

求最长递增子序列的O(NLog(N))方法 让我们维护一个数组,其中第i个元素是一个大小为i的子序列可以结束的最小的数字。

我故意避免进一步的细节,因为投票最多的答案已经解释了它,但这种技术最终导致使用set数据结构的整洁实现(至少在c++中)。

下面是c++中的实现(假设需要严格增加最长子序列的大小)

#include <bits/stdc++.h> // gcc supported header to include (almost) everything
using namespace std;
typedef long long ll;

int main()
{
  ll n;
  cin >> n;
  ll arr[n];
  set<ll> S;

  for(ll i=0; i<n; i++)
  {
    cin >> arr[i];
    auto it = S.lower_bound(arr[i]);
    if(it != S.end())
      S.erase(it);
    S.insert(arr[i]);
  }

  cout << S.size() << endl; // Size of the set is the required answer

  return 0;
}

这可以用动态规划在O(n²)中解决。

按顺序处理输入元素,并为每个元素维护一个元组列表。每个元组(A,B),对于i将表示的元素,A =以i结尾的最长递增子序列的长度,B =以列表[i]结尾的最长递增子序列中列表[i]的前身的索引。

从元素1开始,元素1的元组列表为[(1,0)] 对于元素i,扫描列表0..i,找到元素list[k],使得list[k] < list[i],元素i的A值,Ai为Ak + 1, Bi为k。如果有多个这样的元素,将它们添加到元素i的元组列表中。

最后,找到所有最大值为A (LIS以element结尾的长度)的元素,并使用元组回溯以获得列表。

我已经在http://www.edufyme.com/code/?id=66f041e16a60928b05a7e228a89c3799上分享了相同的代码