给定一个函数,它产生的是1到5之间的随机整数,写一个函数,它产生的是1到7之间的随机整数。


当前回答

这个表达式足以得到1 - 7之间的随机整数

int j = ( rand5()*2 + 4 ) % 7 + 1;

其他回答

int randbit( void )
{
    while( 1 )
    {
        int r = rand5();
        if( r <= 4 ) return(r & 1);
    }
}

int randint( int nbits )
{
    int result = 0;
    while( nbits-- )
    {
        result = (result<<1) | randbit();
    }
    return( result );
}

int rand7( void )
{
    while( 1 )
    {
        int r = randint( 3 ) + 1;
        if( r <= 7 ) return( r );
    }
}

这个问题的主要概念是关于正态分布的,这里提供了一个简单的递归解决这个问题的方法

假设我们已经在我们的作用域中有rand5():

def rand7():
    # twoway = 0 or 1 in the same probability
    twoway = None
    while not twoway in (1, 2):
        twoway = rand5()
    twoway -= 1

    ans = rand5() + twoway * 5

    return ans if ans in range(1,8) else rand7()

解释

我们可以把这个程序分成两个部分:

循环rand5()直到我们找到1或2,这意味着我们有1/2的概率在变量中有1或2 复合ans by rand5() + twoway * 5,这正是rand10()的结果,如果这不符合我们的需要(1~7),然后我们再次运行rand7。

附注:我们不能在第二部分直接运行while循环,因为双向的每个概率都需要是单独的。

但是有一个权衡,因为第一部分中的while循环和return语句中的递归,这个函数不能保证执行时间,它实际上是无效的。

结果

我做了一个简单的测试来观察我的答案的分布。

result = [ rand7() for x in xrange(777777) ]

ans = {
    1: 0,
    2: 0,
    3: 0,
    4: 0,
    5: 0,
    6: 0,
    7: 0,
}

for i in result:
    ans[i] += 1

print ans

它给了

{1: 111170, 2: 110693, 3: 110651, 4: 111260, 5: 111197, 6: 111502, 7: 111304}

因此,我们可以知道这个答案是正态分布。

简单的答案

如果你不关心这个函数的执行时间,下面是一个基于我上面给出的答案的简化答案:

def rand7():
    ans = rand5() + (rand5()-1) * 5
    return ans if ans < 8 else rand7()

这增加了大于8的值的概率,但这可能是这个问题的最短答案。

这是我在看过别人的答案后得出的最简单的答案:

def r5tor7():
    while True:
        cand = (5 * r5()) + r5()
        if cand < 27:
            return cand

Cand在[6,27]范围内,如果r5()的可能结果是均匀分布的,则可能结果是均匀分布的。你可以用下面的代码来测试我的答案:

from collections import defaultdict

def r5_outcome(n):
    if not n:
        yield []
    else:
        for i in range(1, 6):
            for j in r5_outcome(n-1):
                yield [i] + j

def test_r7():
    d = defaultdict(int)
    for x in r5_outcome(2):
        s = sum([x[i] * 5**i for i in range(len(x))])
        if s < 27:
            d[s] += 1
    print len(d), d

R5_outcome(2)生成r5()结果的所有可能组合。我使用与解决方案代码中相同的筛选器进行测试。你可以看到所有的结果都是相等的,因为它们有相同的值。

就是这样,均匀分布,零rand5调用。

def rand7:
    seed += 1
    if seed >= 7:
        seed = 0
    yield seed

需要事先播种。

为什么这行不通?除了对rand5()的额外调用之外?

i = rand5() + rand5() + (rand5() - 1) //Random number between 1 and 14

i = i % 7 + 1;