给定一个函数,它产生的是1到5之间的随机整数,写一个函数,它产生的是1到7之间的随机整数。


当前回答

int rand7()
{
    int zero_one_or_two = ( rand5() + rand5() - 1 ) % 3 ;
    return rand5() + zero_one_or_two ;
}

其他回答

以下是我的发现:

Random5产生1~5的范围,随机分布 如果我们运行3次并将它们加在一起,我们将得到3~15个随机分布的范围 在3~15范围内执行算术 (3~15) - 1 = (2~14) (2~14)/2 = (1~7)

然后我们得到1~7的范围,这是我们正在寻找的Random7。

我首先想到的是这个。但我不知道它是否均匀分布。 在python中实现

进口随机 def rand5 (): 返回random.randint(1、5) def rand7 (): 返回((rand5() -1) * rand5()) %7)+1

package CareerCup;

public class RangeTransform {
 static int counter = (int)(Math.random() * 5 + 1);

 private int func() {
  return (int) (Math.random() * 5 + 1);
 }

 private int getMultiplier() {
  return counter % 5 + 1;
 }

 public int rangeTransform() {
  counter++;
  int count = getMultiplier();
  int mult = func() + 5 * count;
  System.out.println("Mult is : " + 5 * count);
  return (mult) % 7 + 1;
 }

 /**
  * @param args
  */
 public static void main(String[] args) {
  // TODO Auto-generated method stub
  RangeTransform rangeTransform = new RangeTransform();
  for (int i = 0; i < 35; i++)
   System.out.println("Val is : " + rangeTransform.rangeTransform());
 }
}

亚当·罗森菲尔德正确答案的前提是:

X = 5^n(在他的例子中,n=2) 操作n个rand5次调用以获得范围[1,x]内的数字y Z = ((int)(x / 7)) * 7 如果y > z,再试一次。否则返回y % 7 + 1

当n = 2时,有4种可能:y ={22,23,24,25}。如果你使用n = 6,你只有1个扔掉的东西:y ={15625}。

5^6 is 15625 7 times 2232 is 15624

你又给rand5个电话。但是,您获得一个丢弃值(或无限循环)的机会要低得多。如果有办法让y没有可能的一次性值,我还没有找到它。

function Rand7
   put 200 into x
   repeat while x > 118
      put ((random(5)-1) * 25) + ((random(5)-1) * 5) + (random(5)-1) into x
   end repeat
   return (x mod 7) + 1
end Rand7

3次调用Rand5,平均125次中只重复6次。

把它想象成一个5x5x5的3D数组,一遍又一遍地填满1到7,还有6个空格。重新滚动空白。rand5调用在该数组中创建一个以5为基数的三位索引。

4D或更高的n维数组的重复次数会更少,但这意味着对rand5函数的更多调用将成为标准。你会在更高维度上得到递减的效率回报。在我看来,三个似乎是一个很好的折衷方案,但我还没有对它们进行测试。它是特定于rand5实现的。