给定一个函数,它产生的是1到5之间的随机整数,写一个函数,它产生的是1到7之间的随机整数。


当前回答

function Rand7
   put 200 into x
   repeat while x > 118
      put ((random(5)-1) * 25) + ((random(5)-1) * 5) + (random(5)-1) into x
   end repeat
   return (x mod 7) + 1
end Rand7

3次调用Rand5,平均125次中只重复6次。

把它想象成一个5x5x5的3D数组,一遍又一遍地填满1到7,还有6个空格。重新滚动空白。rand5调用在该数组中创建一个以5为基数的三位索引。

4D或更高的n维数组的重复次数会更少,但这意味着对rand5函数的更多调用将成为标准。你会在更高维度上得到递减的效率回报。在我看来,三个似乎是一个很好的折衷方案,但我还没有对它们进行测试。它是特定于rand5实现的。

其他回答

上面引用了一些优雅的算法,但这里有一种方法可以接近它,尽管它可能是迂回的。我假设的值是从0开始的。

R2 =给出小于2的随机数生成器(样本空间= {0,1}) R8 =给出小于8的随机数生成器(样本空间= {0,1,2,3,4,5,6,7})

为了从R2生成R8,您将运行R2三次,并将所有3次运行的组合结果作为3位二进制数使用。下面是R2运行三次时的值范围:

0, 0, 0 --> 0 . . 1, 1, 1 --> 7

现在要从R8生成R7,我们只需再次运行R7,如果它返回7:

int R7() {
  do {
    x = R8();
  } while (x > 6)
  return x;
}

迂回的解决方案是从R5生成R2(就像我们从R8生成R7一样),然后从R2生成R8,然后从R8生成R7。

从一个扩大浮动范围的链接来到这里。这个更有趣。而不是我是如何得出结论的,我突然想到,对于一个给定的随机整数生成函数f,以“基数”b(在这种情况下是4,我会告诉为什么),它可以展开如下:

(b^0 * f() + b^1 * f() + b^2 * f() .... b^p * f()) / (b^(p+1) - 1) * (b-1)

这将把随机生成器转换为FLOAT生成器。我将在这里定义2个参数b和p。虽然这里的“基数”是4,但b实际上可以是任何东西,它也可以是无理数等p,我称之为精度是你想要的浮点生成器的良好粒度的程度。可以把这看作是对rand7的每次调用对rand5的调用数。

但我意识到,如果你把b设为底数+1(在这种情况下是4+1 = 5),这是一个最佳点,你会得到均匀的分布。首先摆脱这个1-5生成器,它实际上是rand4() + 1:

function rand4(){
    return Math.random() * 5 | 0;
}

为了达到这个目的,你可以用rand5()-1替换rand4

接下来是将rand4从整数生成器转换为浮点生成器

function toFloat(f,b,p){
    b = b || 2;
    p = p || 3;
    return (Array.apply(null,Array(p))
    .map(function(d,i){return f()})
    .map(function(d,i){return Math.pow(b,i)*d})
    .reduce(function(ac,d,i){return ac += d;}))
    /
    (
        (Math.pow(b,p) - 1)
        /(b-1)
    )
}

这将把我写的第一个函数应用到一个给定的rand函数。试一试:

toFloat(rand4) //1.4285714285714286 base = 2, precision = 3
toFloat(rand4,3,4) //0.75 base = 3, precision = 4
toFloat(rand4,4,5) //3.7507331378299122 base = 4, precision = 5
toFloat(rand4,5,6) //0.2012288786482335 base = 5, precision =6
...

现在,您可以将这个浮动范围(0-4 include)转换为任何其他浮动范围,然后将其降级为整数。这里我们的底是4,因为我们处理的是rand4,因此b=5的值会给你一个均匀分布。当b增长超过4时,你将开始在分布中引入周期性间隙。我测试了从2到8的b值,每个值都有3000分,并与原生数学进行了比较。随机的javascript,在我看来甚至比本机本身更好:

http://jsfiddle.net/ibowankenobi/r57v432t/

对于上面的链接,单击分布顶部的“bin”按钮以减小分箱大小。最后一个图表是原生数学。随机的,第四个d=5是均匀的。

在你得到浮动范围后,要么与7相乘并抛出小数部分,要么与7相乘,减去0.5并四舍五入:

((toFloat(rand4,5,6)/4 * 7) | 0) + 1   ---> occasionally you'll get 8 with 1/4^6 probability.
Math.round((toFloat(rand4,5,6)/4 * 7) - 0.5) + 1 --> between 1 and 7

该算法将rand5的调用次数减少到理论最小值7/5。通过产生接下来的5个rand7数字来调用它7次。

没有任何随机位的拒绝,也不可能一直等待结果。

#!/usr/bin/env ruby

# random integer from 1 to 5
def rand5
    STDERR.putc '.'
    1 + rand( 5 )
end

@bucket = 0
@bucket_size = 0

# random integer from 1 to 7
def rand7
    if @bucket_size == 0
        @bucket = 7.times.collect{ |d| rand5 * 5**d }.reduce( &:+ )
        @bucket_size = 5
    end

    next_rand7 = @bucket%7 + 1

    @bucket      /= 7
    @bucket_size -= 1

    return next_rand7
end

35.times.each{ putc rand7.to_s }
#!/usr/bin/env ruby
class Integer
  def rand7
    rand(6)+1
  end
end

def rand5
  rand(4)+1
end

x = rand5() # x => int between 1 and 5

y = x.rand7() # y => int between 1 and 7

..尽管这可能被认为是作弊。

这里允许作业题吗?

这个函数进行粗略的“以5为基数”的数学运算,生成0到6之间的数字。

function rnd7() {
    do {
        r1 = rnd5() - 1;
        do {
            r2=rnd5() - 1;
        } while (r2 > 1);
        result = r2 * 5 + r1;
    } while (result > 6);
    return result + 1;
}