给定一个函数,它产生的是1到5之间的随机整数,写一个函数,它产生的是1到7之间的随机整数。
当前回答
function Rand7
put 200 into x
repeat while x > 118
put ((random(5)-1) * 25) + ((random(5)-1) * 5) + (random(5)-1) into x
end repeat
return (x mod 7) + 1
end Rand7
3次调用Rand5,平均125次中只重复6次。
把它想象成一个5x5x5的3D数组,一遍又一遍地填满1到7,还有6个空格。重新滚动空白。rand5调用在该数组中创建一个以5为基数的三位索引。
4D或更高的n维数组的重复次数会更少,但这意味着对rand5函数的更多调用将成为标准。你会在更高维度上得到递减的效率回报。在我看来,三个似乎是一个很好的折衷方案,但我还没有对它们进行测试。它是特定于rand5实现的。
其他回答
上面引用了一些优雅的算法,但这里有一种方法可以接近它,尽管它可能是迂回的。我假设的值是从0开始的。
R2 =给出小于2的随机数生成器(样本空间= {0,1}) R8 =给出小于8的随机数生成器(样本空间= {0,1,2,3,4,5,6,7})
为了从R2生成R8,您将运行R2三次,并将所有3次运行的组合结果作为3位二进制数使用。下面是R2运行三次时的值范围:
0, 0, 0 --> 0 . . 1, 1, 1 --> 7
现在要从R8生成R7,我们只需再次运行R7,如果它返回7:
int R7() {
do {
x = R8();
} while (x > 6)
return x;
}
迂回的解决方案是从R5生成R2(就像我们从R8生成R7一样),然后从R2生成R8,然后从R8生成R7。
rand7() = (rand5()+rand5()+rand5()+rand5()+rand5()+rand5()+rand5())%7+1
编辑:这并不奏效。误差约为千分之二(假设是完美的rand5)。桶得到:
value Count Error%
1 11158 -0.0035
2 11144 -0.0214
3 11144 -0.0214
4 11158 -0.0035
5 11172 +0.0144
6 11177 +0.0208
7 11172 +0.0144
通过转换到的和
n Error%
10 +/- 1e-3,
12 +/- 1e-4,
14 +/- 1e-5,
16 +/- 1e-6,
...
28 +/- 3e-11
似乎每增加2就增加一个数量级
BTW:上面的误差表不是通过采样产生的,而是通过以下递归关系产生的:
P [x,n]是给定n次调用rand5,输出=x可能发生的次数。
p[1,1] ... p[5,1] = 1
p[6,1] ... p[7,1] = 0
p[1,n] = p[7,n-1] + p[6,n-1] + p[5,n-1] + p[4,n-1] + p[3,n-1]
p[2,n] = p[1,n-1] + p[7,n-1] + p[6,n-1] + p[5,n-1] + p[4,n-1]
p[3,n] = p[2,n-1] + p[1,n-1] + p[7,n-1] + p[6,n-1] + p[5,n-1]
p[4,n] = p[3,n-1] + p[2,n-1] + p[1,n-1] + p[7,n-1] + p[6,n-1]
p[5,n] = p[4,n-1] + p[3,n-1] + p[2,n-1] + p[1,n-1] + p[7,n-1]
p[6,n] = p[5,n-1] + p[4,n-1] + p[3,n-1] + p[2,n-1] + p[1,n-1]
p[7,n] = p[6,n-1] + p[5,n-1] + p[4,n-1] + p[3,n-1] + p[2,n-1]
如果有人能就这一点给我反馈,那就太酷了,我使用了没有assert模式的JUNIT,因为在Eclipse中运行它很容易,也很快速,我也可以只定义一个主方法。顺便说一下,我假设rand5给出的值为0-4,加上1将得到1-5,rand7也是如此……所以讨论应该是解决方案,它的分布,而不是它是从0-4还是1-5…
package random;
import java.util.Random;
import org.junit.Test;
public class RandomTest {
@Test
public void testName() throws Exception {
long times = 100000000;
int indexes[] = new int[7];
for(int i = 0; i < times; i++) {
int rand7 = rand7();
indexes[rand7]++;
}
for(int i = 0; i < 7; i++)
System.out.println("Value " + i + ": " + indexes[i]);
}
public int rand7() {
return (rand5() + rand5() + rand5() + rand5() + rand5() + rand5() + rand5()) % 7;
}
public int rand5() {
return new Random().nextInt(5);
}
}
当我运行它时,我得到这样的结果:
Value 0: 14308087
Value 1: 14298303
Value 2: 14279731
Value 3: 14262533
Value 4: 14269749
Value 5: 14277560
Value 6: 14304037
这似乎是一个非常公平的分配,不是吗?
如果我将rand5()添加更少或更多次(其中次数不能被7整除),分布会清楚地显示偏移量。例如,将rand5()相加3次:
Value 0: 15199685
Value 1: 14402429
Value 2: 12795649
Value 3: 12796957
Value 4: 14402252
Value 5: 15202778
Value 6: 15200250
因此,这将导致以下结果:
public int rand(int range) {
int randomValue = 0;
for(int i = 0; i < range; i++) {
randomValue += rand5();
}
return randomValue % range;
}
然后,我可以更进一步:
public static final int ORIGN_RANGE = 5;
public static final int DEST_RANGE = 7;
@Test
public void testName() throws Exception {
long times = 100000000;
int indexes[] = new int[DEST_RANGE];
for(int i = 0; i < times; i++) {
int rand7 = convertRand(DEST_RANGE, ORIGN_RANGE);
indexes[rand7]++;
}
for(int i = 0; i < DEST_RANGE; i++)
System.out.println("Value " + i + ": " + indexes[i]);
}
public int convertRand(int destRange, int originRange) {
int randomValue = 0;
for(int i = 0; i < destRange; i++) {
randomValue += rand(originRange);
}
return randomValue % destRange;
}
public int rand(int range) {
return new Random().nextInt(range);
}
我尝试用不同的值替换destRange和originRange(甚至ORIGIN为7,DEST为13),我得到了这样的分布:
Value 0: 7713763
Value 1: 7706552
Value 2: 7694697
Value 3: 7695319
Value 4: 7688617
Value 5: 7681691
Value 6: 7674798
Value 7: 7680348
Value 8: 7685286
Value 9: 7683943
Value 10: 7690283
Value 11: 7699142
Value 12: 7705561
从这里我可以得出的结论是,你可以通过求和起始随机“目的地”时间来将任意随机改变为任意随机。这将得到一种高斯分布(中间值更有可能,边缘值更不常见)。然而,目标模量似乎均匀地分布在这个高斯分布中…如果能得到数学家的反馈就太好了……
最酷的是,成本是100%可预测的和恒定的,而其他解决方案导致无限循环的概率很小……
extern int r5();
int r7() {
return ((r5() & 0x01) << 2 ) | ((r5() & 0x01) << 1 ) | (r5() & 0x01);
}
下面使用随机数发生器在{1,2,3,4,5,6,7}上产生均匀分布,在{1,2,3,4,5}上产生均匀分布。代码很混乱,但逻辑很清晰。
public static int random_7(Random rg) {
int returnValue = 0;
while (returnValue == 0) {
for (int i = 1; i <= 3; i++) {
returnValue = (returnValue << 1) + SimulateFairCoin(rg);
}
}
return returnValue;
}
private static int SimulateFairCoin(Random rg) {
while (true) {
int flipOne = random_5_mod_2(rg);
int flipTwo = random_5_mod_2(rg);
if (flipOne == 0 && flipTwo == 1) {
return 0;
}
else if (flipOne == 1 && flipTwo == 0) {
return 1;
}
}
}
private static int random_5_mod_2(Random rg) {
return random_5(rg) % 2;
}
private static int random_5(Random rg) {
return rg.Next(5) + 1;
}