给定一个函数,它产生的是1到5之间的随机整数,写一个函数,它产生的是1到7之间的随机整数。
当前回答
通过使用滚动总数,您可以同时
保持平均分配;而且 不需要牺牲随机序列中的任何元素。
这两个问题都是简单的rand(5)+rand(5)…类型的解决方案。下面的Python代码展示了如何实现它(其中大部分是证明发行版)。
import random
x = []
for i in range (0,7):
x.append (0)
t = 0
tt = 0
for i in range (0,700000):
########################################
##### qq.py #####
r = int (random.random () * 5)
t = (t + r) % 7
########################################
##### qq_notsogood.py #####
#r = 20
#while r > 6:
#r = int (random.random () * 5)
#r = r + int (random.random () * 5)
#t = r
########################################
x[t] = x[t] + 1
tt = tt + 1
high = x[0]
low = x[0]
for i in range (0,7):
print "%d: %7d %.5f" % (i, x[i], 100.0 * x[i] / tt)
if x[i] < low:
low = x[i]
if x[i] > high:
high = x[i]
diff = high - low
print "Variation = %d (%.5f%%)" % (diff, 100.0 * diff / tt)
这个输出显示了结果:
pax$ python qq.py
0: 99908 14.27257
1: 100029 14.28986
2: 100327 14.33243
3: 100395 14.34214
4: 99104 14.15771
5: 99829 14.26129
6: 100408 14.34400
Variation = 1304 (0.18629%)
pax$ python qq.py
0: 99547 14.22100
1: 100229 14.31843
2: 100078 14.29686
3: 99451 14.20729
4: 100284 14.32629
5: 100038 14.29114
6: 100373 14.33900
Variation = 922 (0.13171%)
pax$ python qq.py
0: 100481 14.35443
1: 99188 14.16971
2: 100284 14.32629
3: 100222 14.31743
4: 99960 14.28000
5: 99426 14.20371
6: 100439 14.34843
Variation = 1293 (0.18471%)
一个简单的rand(5)+rand(5),忽略那些返回大于6的情况,其典型变化为18%,是上面所示方法的100倍:
pax$ python qq_notsogood.py
0: 31756 4.53657
1: 63304 9.04343
2: 95507 13.64386
3: 127825 18.26071
4: 158851 22.69300
5: 127567 18.22386
6: 95190 13.59857
Variation = 127095 (18.15643%)
pax$ python qq_notsogood.py
0: 31792 4.54171
1: 63637 9.09100
2: 95641 13.66300
3: 127627 18.23243
4: 158751 22.67871
5: 126782 18.11171
6: 95770 13.68143
Variation = 126959 (18.13700%)
pax$ python qq_notsogood.py
0: 31955 4.56500
1: 63485 9.06929
2: 94849 13.54986
3: 127737 18.24814
4: 159687 22.81243
5: 127391 18.19871
6: 94896 13.55657
Variation = 127732 (18.24743%)
并且,根据Nixuz的建议,我已经清理了脚本,所以您可以提取并使用rand7…材料:
import random
# rand5() returns 0 through 4 inclusive.
def rand5():
return int (random.random () * 5)
# rand7() generator returns 0 through 6 inclusive (using rand5()).
def rand7():
rand7ret = 0
while True:
rand7ret = (rand7ret + rand5()) % 7
yield rand7ret
# Number of test runs.
count = 700000
# Work out distribution.
distrib = [0,0,0,0,0,0,0]
rgen =rand7()
for i in range (0,count):
r = rgen.next()
distrib[r] = distrib[r] + 1
# Print distributions and calculate variation.
high = distrib[0]
low = distrib[0]
for i in range (0,7):
print "%d: %7d %.5f" % (i, distrib[i], 100.0 * distrib[i] / count)
if distrib[i] < low:
low = distrib[i]
if distrib[i] > high:
high = distrib[i]
diff = high - low
print "Variation = %d (%.5f%%)" % (diff, 100.0 * diff / count)
其他回答
首先,我在1点上移动ramdom5() 6次,得到7个随机数。 其次,将7个数相加得到公和。 第三,除法的余数是7。 最后加1,得到从1到7的结果。 这个方法给出了在1到7的范围内获得数字的相等概率,除了1。1的概率略高。
public int random7(){
Random random = new Random();
//function (1 + random.nextInt(5)) is given
int random1_5 = 1 + random.nextInt(5); // 1,2,3,4,5
int random2_6 = 2 + random.nextInt(5); // 2,3,4,5,6
int random3_7 = 3 + random.nextInt(5); // 3,4,5,6,7
int random4_8 = 4 + random.nextInt(5); // 4,5,6,7,8
int random5_9 = 5 + random.nextInt(5); // 5,6,7,8,9
int random6_10 = 6 + random.nextInt(5); //6,7,8,9,10
int random7_11 = 7 + random.nextInt(5); //7,8,9,10,11
//sumOfRandoms is between 28 and 56
int sumOfRandoms = random1_5 + random2_6 + random3_7 +
random4_8 + random5_9 + random6_10 + random7_11;
//result is number between 0 and 6, and
//equals 0 if sumOfRandoms = 28 or 35 or 42 or 49 or 56 , 5 options
//equals 1 if sumOfRandoms = 29 or 36 or 43 or 50, 4 options
//equals 2 if sumOfRandoms = 30 or 37 or 44 or 51, 4 options
//equals 3 if sumOfRandoms = 31 or 38 or 45 or 52, 4 options
//equals 4 if sumOfRandoms = 32 or 39 or 46 or 53, 4 options
//equals 5 if sumOfRandoms = 33 or 40 or 47 or 54, 4 options
//equals 6 if sumOfRandoms = 34 or 41 or 48 or 55, 4 options
//It means that the probabilities of getting numbers between 0 and 6 are almost equal.
int result = sumOfRandoms % 7;
//we should add 1 to move the interval [0,6] to the interval [1,7]
return 1 + result;
}
就是这样,均匀分布,零rand5调用。
def rand7:
seed += 1
if seed >= 7:
seed = 0
yield seed
需要事先播种。
我知道它已经被回答了,但这似乎是可以工作的,但我不能告诉你它是否有偏见。我的“测试”表明,这至少是合理的。
也许亚当·罗森菲尔德会好心地评论一下?
我(天真?)的想法是这样的:
积累rand5,直到有足够的随机位形成rand7。这最多需要2兰特。为了得到rand7,我使用累计值mod 7。
为了避免累加器溢出,由于累加器是mod 7,那么我取累加器的mod 7:
(5a + rand5) % 7 = (k*7 + (5a%7) + rand5) % 7 = ( (5a%7) + rand5) % 7
rand7()函数如下:
(我让rand5的范围是0-4,rand7也是0-6。)
int rand7(){
static int a=0;
static int e=0;
int r;
a = a * 5 + rand5();
e = e + 5; // added 5/7ths of a rand7 number
if ( e<7 ){
a = a * 5 + rand5();
e = e + 5; // another 5/7ths
}
r = a % 7;
e = e - 7; // removed a rand7 number
a = a % 7;
return r;
}
编辑:增加了1亿次试验的结果。
'Real' rand函数mod 5或7
rand5 : 平均=1.999802 0:20003944 1:19999889 2:20003690 3:19996938 4:19995539 Rand7 : 平均=3.000111 0:14282851 1:14282879 2:14284554 3:14288546 4:14292388 5:14288736 6:14280046
我的边缘7
平均数看起来不错,数字分布也不错。
Randt : 平均=3.000080 0:14288793 1:14280135 2:14287848 3:14285277 4:14286341 5:14278663 6:14292943
与Martin的答案相似,但却很少抛弃熵:
int rand7(void) {
static int m = 1;
static int r = 0;
for (;;) {
while (m <= INT_MAX / 5) {
r = r + m * (rand5() - 1);
m = m * 5;
}
int q = m / 7;
if (r < q * 7) {
int i = r % 7;
r = r / 7;
m = q;
return i + 1;
}
r = r - q * 7;
m = m - q * 7;
}
}
在这里,我们在0到m-1之间建立一个随机值,并尝试通过添加尽可能多的状态来最大化m,而不会溢出(INT_MAX是C中适合int的最大值,或者您可以将其替换为任何在您的语言和体系结构中有意义的大值)。
然后;如果r落在能被7整除的最大可能区间内,那么它包含一个可行的结果,我们可以将这个区间除以7,取余数作为我们的结果,并将剩余的值返回到熵池。否则r在另一个不均匀的区间内我们就必须抛弃这个不拟合区间重新启动熵池。
与这里的流行答案相比,它调用rand5()的频率平均减少了一半。
为了提高性能,可以将除法分解为琐碎的比特旋转和lut。
这是我在看过别人的答案后得出的最简单的答案:
def r5tor7():
while True:
cand = (5 * r5()) + r5()
if cand < 27:
return cand
Cand在[6,27]范围内,如果r5()的可能结果是均匀分布的,则可能结果是均匀分布的。你可以用下面的代码来测试我的答案:
from collections import defaultdict
def r5_outcome(n):
if not n:
yield []
else:
for i in range(1, 6):
for j in r5_outcome(n-1):
yield [i] + j
def test_r7():
d = defaultdict(int)
for x in r5_outcome(2):
s = sum([x[i] * 5**i for i in range(len(x))])
if s < 27:
d[s] += 1
print len(d), d
R5_outcome(2)生成r5()结果的所有可能组合。我使用与解决方案代码中相同的筛选器进行测试。你可以看到所有的结果都是相等的,因为它们有相同的值。