给定一个函数,它产生的是1到5之间的随机整数,写一个函数,它产生的是1到7之间的随机整数。


当前回答

就是这样,均匀分布,零rand5调用。

def rand7:
    seed += 1
    if seed >= 7:
        seed = 0
    yield seed

需要事先播种。

其他回答

这个问题的主要概念是关于正态分布的,这里提供了一个简单的递归解决这个问题的方法

假设我们已经在我们的作用域中有rand5():

def rand7():
    # twoway = 0 or 1 in the same probability
    twoway = None
    while not twoway in (1, 2):
        twoway = rand5()
    twoway -= 1

    ans = rand5() + twoway * 5

    return ans if ans in range(1,8) else rand7()

解释

我们可以把这个程序分成两个部分:

循环rand5()直到我们找到1或2,这意味着我们有1/2的概率在变量中有1或2 复合ans by rand5() + twoway * 5,这正是rand10()的结果,如果这不符合我们的需要(1~7),然后我们再次运行rand7。

附注:我们不能在第二部分直接运行while循环,因为双向的每个概率都需要是单独的。

但是有一个权衡,因为第一部分中的while循环和return语句中的递归,这个函数不能保证执行时间,它实际上是无效的。

结果

我做了一个简单的测试来观察我的答案的分布。

result = [ rand7() for x in xrange(777777) ]

ans = {
    1: 0,
    2: 0,
    3: 0,
    4: 0,
    5: 0,
    6: 0,
    7: 0,
}

for i in result:
    ans[i] += 1

print ans

它给了

{1: 111170, 2: 110693, 3: 110651, 4: 111260, 5: 111197, 6: 111502, 7: 111304}

因此,我们可以知道这个答案是正态分布。

简单的答案

如果你不关心这个函数的执行时间,下面是一个基于我上面给出的答案的简化答案:

def rand7():
    ans = rand5() + (rand5()-1) * 5
    return ans if ans < 8 else rand7()

这增加了大于8的值的概率,但这可能是这个问题的最短答案。

因为1/7是一个以5为底的无限小数,所以没有(完全正确的)解可以在常数时间内运行。一个简单的解决方案是使用拒绝抽样,例如:


int i;
do
{
  i = 5 * (rand5() - 1) + rand5();  // i is now uniformly random between 1 and 25
} while(i > 21);
// i is now uniformly random between 1 and 21
return i % 7 + 1;  // result is now uniformly random between 1 and 7

这个循环的预期运行时间为25/21 = 1.19次迭代,但是永远循环的概率非常小。

我知道它已经被回答了,但这似乎是可以工作的,但我不能告诉你它是否有偏见。我的“测试”表明,这至少是合理的。

也许亚当·罗森菲尔德会好心地评论一下?

我(天真?)的想法是这样的:

积累rand5,直到有足够的随机位形成rand7。这最多需要2兰特。为了得到rand7,我使用累计值mod 7。

为了避免累加器溢出,由于累加器是mod 7,那么我取累加器的mod 7:

(5a + rand5) % 7 = (k*7 + (5a%7) + rand5) % 7 = ( (5a%7) + rand5) % 7

rand7()函数如下:

(我让rand5的范围是0-4,rand7也是0-6。)

int rand7(){
  static int    a=0;
  static int    e=0;
  int       r;
  a = a * 5 + rand5();
  e = e + 5;        // added 5/7ths of a rand7 number
  if ( e<7 ){
    a = a * 5 + rand5();
    e = e + 5;  // another 5/7ths
  }
  r = a % 7;
  e = e - 7;        // removed a rand7 number
  a = a % 7;
  return r;
}

编辑:增加了1亿次试验的结果。

'Real' rand函数mod 5或7

rand5 : 平均=1.999802 0:20003944 1:19999889 2:20003690 3:19996938 4:19995539 Rand7 : 平均=3.000111 0:14282851 1:14282879 2:14284554 3:14288546 4:14292388 5:14288736 6:14280046

我的边缘7

平均数看起来不错,数字分布也不错。

Randt : 平均=3.000080 0:14288793 1:14280135 2:14287848 3:14285277 4:14286341 5:14278663 6:14292943

这是我的,它试图从多个rand5()函数调用中重新创建Math.random(),通过使用“加权分数”(?)重新构造一个单位间隔(Math.random()的输出范围)。然后使用这个随机单位间隔产生一个1到7之间的随机整数:

function rand5(){
  return Math.floor(Math.random()*5)+1;
}
function rand7(){
  var uiRandom=0;
  var div=1;
  for(var i=0; i<7; i++){
    div*=5;
    var term=(rand5()-1)/div;
    uiRandom+=term;
  }
  //return uiRandom;
  return Math.floor(uiRandom*7)+1; 
}

解释一下:我们取一个0-4之间的随机整数(只是rand5()-1),然后将每个结果乘以1/ 5,1 / 25,1 /125,…然后把它们加起来。这类似于二元加权分数的工作原理;相反,我认为我们将其称为五(以5为底)加权分数:产生一个从0 - 0.999999作为一系列(1/5)^n项的数字。

修改函数以获取任何输入/输出随机整数范围应该是简单的。上面的代码可以在重写为闭包时进行优化。


或者,我们也可以这样做:

function rand5(){
  return Math.floor(Math.random()*5)+1;
}
function rand7(){
  var buffer=[];
  var div=1;
  for (var i=0; i<7; i++){
    buffer.push((rand5()-1).toString(5));
    div*=5;
  }
  var n=parseInt(buffer.join(""),5);
  var uiRandom=n/div;
  //return uiRandom;
  return Math.floor(uiRandom*7)+1; 
}

我们不需要费力地构造一个五进制(以5为基数)加权分数,而是实际地构造一个五进制数,并将其转化为一个分数(0—0.9999…和前面一样),然后从那里计算随机的1- 7位数字。

上面的结果(代码片段#2:运行3次,每次100,000次调用):

1: 14263; 2: 14414; 3: 14249; 4: 14109; 5: 14217; 6: 14361; 7: 14387 1: 14205; 2: 14394; 3: 14238; 4: 14187; 5: 14384; 6: 14224; 7: 14368 1: 14425; 2: 14236; 3: 14334; 4: 14232; 5: 14160; 6: 14320; 7: 14293

这个答案更像是一个从Rand5函数中获得最大熵的实验。因此,T有点不清楚,几乎可以肯定比其他实现慢得多。

假设0-4为均匀分布,0-6为均匀分布:

public class SevenFromFive
{
  public SevenFromFive()
  {
    // this outputs a uniform ditribution but for some reason including it 
    // screws up the output distribution
    // open question Why?
    this.fifth = new ProbabilityCondensor(5, b => {});
    this.eigth = new ProbabilityCondensor(8, AddEntropy);
  } 

  private static Random r = new Random();
  private static uint Rand5()
  {
    return (uint)r.Next(0,5);
  }

  private class ProbabilityCondensor
  {
    private readonly int samples;
    private int counter;
    private int store;
    private readonly Action<bool> output;

    public ProbabilityCondensor(int chanceOfTrueReciprocal,
      Action<bool> output)
    {
      this.output = output;
      this.samples = chanceOfTrueReciprocal - 1;  
    }

    public void Add(bool bit)
    {
      this.counter++;
      if (bit)
        this.store++;   
      if (counter == samples)
      {
        bool? e;
        if (store == 0)
          e = false;
        else if (store == 1)
          e = true;
        else
          e = null;// discard for now       
        counter = 0;
        store = 0;
        if (e.HasValue)
          output(e.Value);
      }
    }
  }

  ulong buffer = 0;
  const ulong Mask = 7UL;
  int bitsAvail = 0;
  private readonly ProbabilityCondensor fifth;
  private readonly ProbabilityCondensor eigth;

  private void AddEntropy(bool bit)
  {
    buffer <<= 1;
    if (bit)
      buffer |= 1;      
    bitsAvail++;
  }

  private void AddTwoBitsEntropy(uint u)
  {
    buffer <<= 2;
    buffer |= (u & 3UL);    
    bitsAvail += 2;
  }

  public uint Rand7()
  {
    uint selection;   
    do
    {
      while (bitsAvail < 3)
      {
        var x = Rand5();
        if (x < 4)
        {
          // put the two low order bits straight in
          AddTwoBitsEntropy(x);
          fifth.Add(false);
        }
        else
        { 
          fifth.Add(true);
        }
      }
      // read 3 bits
      selection = (uint)((buffer & Mask));
      bitsAvail -= 3;     
      buffer >>= 3;
      if (selection == 7)
        eigth.Add(true);
      else
        eigth.Add(false);
    }
    while (selection == 7);   
    return selection;
  }
}

每次调用Rand5添加到缓冲区的比特数目前是4/5 * 2,所以是1.6。 如果包括1/5的概率值,则增加0.05,因此增加1.65,但请参阅代码中的注释,我不得不禁用它。

调用Rand7消耗的比特数= 3 + 1/8 *(3 + 1/8 *(3 + 1/8 *(… 这是3 + 3/8 + 3/64 + 3/512…大约是3.42

通过从7中提取信息,我每次调用回收1/8*1/7位,大约0.018

这使得每次调用的净消耗为3.4比特,这意味着每一次Rand7调用到Rand5的比率为2.125。最优值应该是2.1。

我可以想象这种方法比这里的许多其他方法都要慢得多,除非调用Rand5的代价非常昂贵(比如调用一些外部熵源)。