给定一个函数,它产生的是1到5之间的随机整数,写一个函数,它产生的是1到7之间的随机整数。
当前回答
我知道它已经被回答了,但这似乎是可以工作的,但我不能告诉你它是否有偏见。我的“测试”表明,这至少是合理的。
也许亚当·罗森菲尔德会好心地评论一下?
我(天真?)的想法是这样的:
积累rand5,直到有足够的随机位形成rand7。这最多需要2兰特。为了得到rand7,我使用累计值mod 7。
为了避免累加器溢出,由于累加器是mod 7,那么我取累加器的mod 7:
(5a + rand5) % 7 = (k*7 + (5a%7) + rand5) % 7 = ( (5a%7) + rand5) % 7
rand7()函数如下:
(我让rand5的范围是0-4,rand7也是0-6。)
int rand7(){
static int a=0;
static int e=0;
int r;
a = a * 5 + rand5();
e = e + 5; // added 5/7ths of a rand7 number
if ( e<7 ){
a = a * 5 + rand5();
e = e + 5; // another 5/7ths
}
r = a % 7;
e = e - 7; // removed a rand7 number
a = a % 7;
return r;
}
编辑:增加了1亿次试验的结果。
'Real' rand函数mod 5或7
rand5 : 平均=1.999802 0:20003944 1:19999889 2:20003690 3:19996938 4:19995539 Rand7 : 平均=3.000111 0:14282851 1:14282879 2:14284554 3:14288546 4:14292388 5:14288736 6:14280046
我的边缘7
平均数看起来不错,数字分布也不错。
Randt : 平均=3.000080 0:14288793 1:14280135 2:14287848 3:14285277 4:14286341 5:14278663 6:14292943
其他回答
算法:
7可以用3位的序列表示
使用rand(5)随机地用0或1填充每一位。 例如:调用rand(5)和
如果结果是1或2,则用0填充位 如果结果是4或5,则用1填充位 如果结果是3,则忽略并重新执行(拒绝)
这样,我们可以用0/1随机填充3位,从而得到1-7中的数字。
编辑:这似乎是最简单和最有效的答案,所以这里有一些代码:
public static int random_7() {
int returnValue = 0;
while (returnValue == 0) {
for (int i = 1; i <= 3; i++) {
returnValue = (returnValue << 1) + random_5_output_2();
}
}
return returnValue;
}
private static int random_5_output_2() {
while (true) {
int flip = random_5();
if (flip < 3) {
return 0;
}
else if (flip > 3) {
return 1;
}
}
}
这里我们使用约定的rand(n) -> [0, n - 1]
从我读到的许多答案中,它们要么提供了一致性,要么提供了暂停保证,但不能同时提供(adam rosenfeld的第二个答案可能)。
然而,这样做是可能的。我们基本上有这样的分布:
这给[0-6]上的分布留下了一个漏洞:5和6没有 发生的概率。想象一下,现在我们试图通过移动 概率分布和求和。
事实上,我们可以把初始分布平移1,然后 重复将得到的分布与移位的初始分布相加 2,然后3,以此类推,直到7,不包括在内(我们涵盖了整个范围)。 如下图所示。颜色的顺序,对应 步骤,是蓝色->绿色->青色->白色->品红->黄色->红色。
因为每个插槽由7个移位分布中的5个覆盖(移位从 0到6),因为我们假设随机数是独立于1的 Ran5()呼叫另一个,我们获得
p(x) = 5 / 35 = 1 / 7 for all x in [0, 6]
这意味着,给定来自ran5()的7个独立随机数,我们可以 计算一个在[0-6]范围内具有均匀概率的随机数。 实际上是ran5()概率 分布甚至不需要均匀,只要样本是均匀的 独立(所以每次试验的分布保持不变) 同样,这也适用于5和7之外的其他数字。
这为我们提供了以下python函数:
def rand_range_transform(rands):
"""
returns a uniform random number in [0, len(rands) - 1]
if all r in rands are independent random numbers from the same uniform distribution
"""
return sum((x + i) for i, x in enumerate(rands)) % len(rands) # a single modulo outside the sum is enough in modulo arithmetic
可以这样使用:
rand5 = lambda : random.randrange(5)
def rand7():
return rand_range_transform([rand5() for _ in range(7)])
如果我们调用rand7() 70000次,我们可以得到:
max: 6 min: 0 mean: 2.99711428571 std: 2.00194697049
0: 10019
1: 10016
2: 10071
3: 10044
4: 9775
5: 10042
6: 10033
这很好,尽管远非完美。事实上,我们的一个假设是 在这个实现中很可能是false:我们使用一个PRNG,因此,结果 的值依赖于上一个结果。
也就是说,使用一个真正随机的数字来源,输出也应该是 真正随机的。这个算法在任何情况下都终止。
但这是有代价的:我们需要为一个rand7()调用7次rand5() 调用。
简单高效:
int rand7 ( void )
{
return 4; // this number has been calculated using
// rand5() and is in the range 1..7
}
(灵感来自你最喜欢的“程序员”卡通?)
该算法将rand5的调用次数减少到理论最小值7/5。通过产生接下来的5个rand7数字来调用它7次。
没有任何随机位的拒绝,也不可能一直等待结果。
#!/usr/bin/env ruby
# random integer from 1 to 5
def rand5
STDERR.putc '.'
1 + rand( 5 )
end
@bucket = 0
@bucket_size = 0
# random integer from 1 to 7
def rand7
if @bucket_size == 0
@bucket = 7.times.collect{ |d| rand5 * 5**d }.reduce( &:+ )
@bucket_size = 5
end
next_rand7 = @bucket%7 + 1
@bucket /= 7
@bucket_size -= 1
return next_rand7
end
35.times.each{ putc rand7.to_s }
下面是Adam回答的Python实现。
import random
def rand5():
return random.randint(1, 5)
def rand7():
while True:
r = 5 * (rand5() - 1) + rand5()
#r is now uniformly random between 1 and 25
if (r <= 21):
break
#result is now uniformly random between 1 and 7
return r % 7 + 1
我喜欢把我正在研究的算法扔进Python,这样我就可以摆弄它们,我想我把它贴在这里,希望它对外面的人有用,而不是花很长时间来拼凑。