给定一个函数,它产生的是1到5之间的随机整数,写一个函数,它产生的是1到7之间的随机整数。
当前回答
int getOneToSeven(){
int added = 0;
for(int i = 1; i<=7; i++){
added += getOneToFive();
}
return (added)%7+1;
}
其他回答
只需要缩放第一个函数的输出
0) you have a number in range 1-5
1) subtract 1 to make it in range 0-4
2) multiply by (7-1)/(5-1) to make it in range 0-6
3) add 1 to increment the range: Now your result is in between 1-7
int rand7()
{
return ( rand5() + (rand5()%3) );
}
rand5() -返回1-5之间的值 rand5()%3 -返回0-2之间的值 所以,当加起来时,总价值将在1-7之间
从一个扩大浮动范围的链接来到这里。这个更有趣。而不是我是如何得出结论的,我突然想到,对于一个给定的随机整数生成函数f,以“基数”b(在这种情况下是4,我会告诉为什么),它可以展开如下:
(b^0 * f() + b^1 * f() + b^2 * f() .... b^p * f()) / (b^(p+1) - 1) * (b-1)
这将把随机生成器转换为FLOAT生成器。我将在这里定义2个参数b和p。虽然这里的“基数”是4,但b实际上可以是任何东西,它也可以是无理数等p,我称之为精度是你想要的浮点生成器的良好粒度的程度。可以把这看作是对rand7的每次调用对rand5的调用数。
但我意识到,如果你把b设为底数+1(在这种情况下是4+1 = 5),这是一个最佳点,你会得到均匀的分布。首先摆脱这个1-5生成器,它实际上是rand4() + 1:
function rand4(){
return Math.random() * 5 | 0;
}
为了达到这个目的,你可以用rand5()-1替换rand4
接下来是将rand4从整数生成器转换为浮点生成器
function toFloat(f,b,p){
b = b || 2;
p = p || 3;
return (Array.apply(null,Array(p))
.map(function(d,i){return f()})
.map(function(d,i){return Math.pow(b,i)*d})
.reduce(function(ac,d,i){return ac += d;}))
/
(
(Math.pow(b,p) - 1)
/(b-1)
)
}
这将把我写的第一个函数应用到一个给定的rand函数。试一试:
toFloat(rand4) //1.4285714285714286 base = 2, precision = 3
toFloat(rand4,3,4) //0.75 base = 3, precision = 4
toFloat(rand4,4,5) //3.7507331378299122 base = 4, precision = 5
toFloat(rand4,5,6) //0.2012288786482335 base = 5, precision =6
...
现在,您可以将这个浮动范围(0-4 include)转换为任何其他浮动范围,然后将其降级为整数。这里我们的底是4,因为我们处理的是rand4,因此b=5的值会给你一个均匀分布。当b增长超过4时,你将开始在分布中引入周期性间隙。我测试了从2到8的b值,每个值都有3000分,并与原生数学进行了比较。随机的javascript,在我看来甚至比本机本身更好:
http://jsfiddle.net/ibowankenobi/r57v432t/
对于上面的链接,单击分布顶部的“bin”按钮以减小分箱大小。最后一个图表是原生数学。随机的,第四个d=5是均匀的。
在你得到浮动范围后,要么与7相乘并抛出小数部分,要么与7相乘,减去0.5并四舍五入:
((toFloat(rand4,5,6)/4 * 7) | 0) + 1 ---> occasionally you'll get 8 with 1/4^6 probability.
Math.round((toFloat(rand4,5,6)/4 * 7) - 0.5) + 1 --> between 1 and 7
int ans = 0;
while (ans == 0)
{
for (int i=0; i<3; i++)
{
while ((r = rand5()) == 3){};
ans += (r < 3) >> i
}
}
extern int r5();
int r7() {
return ((r5() & 0x01) << 2 ) | ((r5() & 0x01) << 1 ) | (r5() & 0x01);
}
推荐文章
- 如何计算圆周长上的一点?
- 从整数流中找到运行中位数
- 在日历应用程序中建模重复事件的最佳方法是什么?
- 在任何情况下,您更喜欢高大o时间复杂度算法而不是低大o时间复杂度算法吗?
- 如何在c++中生成一个随机数?
- 如何使用JavaScript比较软件版本号?数量(只)
- 跳跃表vs.二叉搜索树
- 如何使四舍五入百分比加起来为100%
- 是否有可能得到一个函数的所有参数作为单一对象内的函数?
- 随机行选择在熊猫数据框架
- LL和LR解析之间的区别是什么?
- log(n!) = Θ(n·log(n))?
- C语言中位反转的高效算法(从MSB->LSB到LSB->MSB)
- 递归还是迭代?
- 从文件中读取随机行有什么简单的方法?