给定一个函数,它产生的是1到5之间的随机整数,写一个函数,它产生的是1到7之间的随机整数。


当前回答

上面引用了一些优雅的算法,但这里有一种方法可以接近它,尽管它可能是迂回的。我假设的值是从0开始的。

R2 =给出小于2的随机数生成器(样本空间= {0,1}) R8 =给出小于8的随机数生成器(样本空间= {0,1,2,3,4,5,6,7})

为了从R2生成R8,您将运行R2三次,并将所有3次运行的组合结果作为3位二进制数使用。下面是R2运行三次时的值范围:

0, 0, 0 --> 0 . . 1, 1, 1 --> 7

现在要从R8生成R7,我们只需再次运行R7,如果它返回7:

int R7() {
  do {
    x = R8();
  } while (x > 6)
  return x;
}

迂回的解决方案是从R5生成R2(就像我们从R8生成R7一样),然后从R2生成R8,然后从R8生成R7。

其他回答

我想到了一个解决这个问题的有趣方法,想和大家分享一下。

function rand7() {

    var returnVal = 4;

    for (var n=0; n<3; n++) {
        var rand = rand5();

        if (rand==1||rand==2){
            returnVal+=1;
        }
        else if (rand==3||rand==4) {
            returnVal-=1;
        }
    }

    return returnVal;
}

我构建了一个测试函数,循环rand7() 10,000次,将所有返回值相加,然后除以10,000。如果rand7()工作正常,我们计算的平均值应该是4 -例如,(1+2+3+4+5+6+7 / 7)= 4。在做了多次测试后,平均值确实是4:)

#!/usr/bin/env ruby
class Integer
  def rand7
    rand(6)+1
  end
end

def rand5
  rand(4)+1
end

x = rand5() # x => int between 1 and 5

y = x.rand7() # y => int between 1 and 7

..尽管这可能被认为是作弊。

通过使用滚动总数,您可以同时

保持平均分配;而且 不需要牺牲随机序列中的任何元素。

这两个问题都是简单的rand(5)+rand(5)…类型的解决方案。下面的Python代码展示了如何实现它(其中大部分是证明发行版)。

import random
x = []
for i in range (0,7):
    x.append (0)
t = 0
tt = 0
for i in range (0,700000):
    ########################################
    #####            qq.py             #####
    r = int (random.random () * 5)
    t = (t + r) % 7
    ########################################
    #####       qq_notsogood.py        #####
    #r = 20
    #while r > 6:
        #r =     int (random.random () * 5)
        #r = r + int (random.random () * 5)
    #t = r
    ########################################
    x[t] = x[t] + 1
    tt = tt + 1
high = x[0]
low = x[0]
for i in range (0,7):
    print "%d: %7d %.5f" % (i, x[i], 100.0 * x[i] / tt)
    if x[i] < low:
        low = x[i]
    if x[i] > high:
        high = x[i]
diff = high - low
print "Variation = %d (%.5f%%)" % (diff, 100.0 * diff / tt)

这个输出显示了结果:

pax$ python qq.py
0:   99908 14.27257
1:  100029 14.28986
2:  100327 14.33243
3:  100395 14.34214
4:   99104 14.15771
5:   99829 14.26129
6:  100408 14.34400
Variation = 1304 (0.18629%)

pax$ python qq.py
0:   99547 14.22100
1:  100229 14.31843
2:  100078 14.29686
3:   99451 14.20729
4:  100284 14.32629
5:  100038 14.29114
6:  100373 14.33900
Variation = 922 (0.13171%)

pax$ python qq.py
0:  100481 14.35443
1:   99188 14.16971
2:  100284 14.32629
3:  100222 14.31743
4:   99960 14.28000
5:   99426 14.20371
6:  100439 14.34843
Variation = 1293 (0.18471%)

一个简单的rand(5)+rand(5),忽略那些返回大于6的情况,其典型变化为18%,是上面所示方法的100倍:

pax$ python qq_notsogood.py
0:   31756 4.53657
1:   63304 9.04343
2:   95507 13.64386
3:  127825 18.26071
4:  158851 22.69300
5:  127567 18.22386
6:   95190 13.59857
Variation = 127095 (18.15643%)

pax$ python qq_notsogood.py
0:   31792 4.54171
1:   63637 9.09100
2:   95641 13.66300
3:  127627 18.23243
4:  158751 22.67871
5:  126782 18.11171
6:   95770 13.68143
Variation = 126959 (18.13700%)

pax$ python qq_notsogood.py
0:   31955 4.56500
1:   63485 9.06929
2:   94849 13.54986
3:  127737 18.24814
4:  159687 22.81243
5:  127391 18.19871
6:   94896 13.55657
Variation = 127732 (18.24743%)

并且,根据Nixuz的建议,我已经清理了脚本,所以您可以提取并使用rand7…材料:

import random

# rand5() returns 0 through 4 inclusive.

def rand5():
    return int (random.random () * 5)

# rand7() generator returns 0 through 6 inclusive (using rand5()).

def rand7():
    rand7ret = 0
    while True:
        rand7ret = (rand7ret + rand5()) % 7
        yield rand7ret

# Number of test runs.

count = 700000

# Work out distribution.

distrib = [0,0,0,0,0,0,0]
rgen =rand7()
for i in range (0,count):
    r = rgen.next()
    distrib[r] = distrib[r] + 1

# Print distributions and calculate variation.

high = distrib[0]
low = distrib[0]
for i in range (0,7):
    print "%d: %7d %.5f" % (i, distrib[i], 100.0 * distrib[i] / count)
    if distrib[i] < low:
        low = distrib[i]
    if distrib[i] > high:
        high = distrib[i]
diff = high - low
print "Variation = %d (%.5f%%)" % (diff, 100.0 * diff / count)
function Rand7
   put 200 into x
   repeat while x > 118
      put ((random(5)-1) * 25) + ((random(5)-1) * 5) + (random(5)-1) into x
   end repeat
   return (x mod 7) + 1
end Rand7

3次调用Rand5,平均125次中只重复6次。

把它想象成一个5x5x5的3D数组,一遍又一遍地填满1到7,还有6个空格。重新滚动空白。rand5调用在该数组中创建一个以5为基数的三位索引。

4D或更高的n维数组的重复次数会更少,但这意味着对rand5函数的更多调用将成为标准。你会在更高维度上得到递减的效率回报。在我看来,三个似乎是一个很好的折衷方案,但我还没有对它们进行测试。它是特定于rand5实现的。

Here's a solution that fits entirely within integers and is within about 4% of optimal (i.e. uses 1.26 random numbers in {0..4} for every one in {0..6}). The code's in Scala, but the math should be reasonably clear in any language: you take advantage of the fact that 7^9 + 7^8 is very close to 5^11. So you pick an 11 digit number in base 5, and then interpret it as a 9 digit number in base 7 if it's in range (giving 9 base 7 numbers), or as an 8 digit number if it's over the 9 digit number, etc.:

abstract class RNG {
  def apply(): Int
}

class Random5 extends RNG {
  val rng = new scala.util.Random
  var count = 0
  def apply() = { count += 1 ; rng.nextInt(5) }
}

class FiveSevener(five: RNG) {
  val sevens = new Array[Int](9)
  var nsevens = 0
  val to9 = 40353607;
  val to8 = 5764801;
  val to7 = 823543;
  def loadSevens(value: Int, count: Int) {
    nsevens = 0;
    var remaining = value;
    while (nsevens < count) {
      sevens(nsevens) = remaining % 7
      remaining /= 7
      nsevens += 1
    }
  }
  def loadSevens {
    var fivepow11 = 0;
    var i=0
    while (i<11) { i+=1 ; fivepow11 = five() + fivepow11*5 }
    if (fivepow11 < to9) { loadSevens(fivepow11 , 9) ; return }
    fivepow11 -= to9
    if (fivepow11 < to8) { loadSevens(fivepow11 , 8) ; return }
    fivepow11 -= to8
    if (fivepow11 < 3*to7) loadSevens(fivepow11 % to7 , 7)
    else loadSevens
  }
  def apply() = {
    if (nsevens==0) loadSevens
    nsevens -= 1
    sevens(nsevens)
  }
}

如果你将一个测试粘贴到解释器中(实际上是REPL),你会得到:

scala> val five = new Random5
five: Random5 = Random5@e9c592

scala> val seven = new FiveSevener(five)
seven: FiveSevener = FiveSevener@143c423

scala> val counts = new Array[Int](7)
counts: Array[Int] = Array(0, 0, 0, 0, 0, 0, 0)

scala> var i=0 ; while (i < 100000000) { counts( seven() ) += 1 ; i += 1 }
i: Int = 100000000

scala> counts
res0: Array[Int] = Array(14280662, 14293012, 14281286, 14284836, 14287188,
14289332, 14283684)

scala> five.count
res1: Int = 125902876

分布很好,很平坦(在每个箱子中,10^8的1/7大约在10k范围内,就像预期的近似高斯分布一样)。