给定一个函数,它产生的是1到5之间的随机整数,写一个函数,它产生的是1到7之间的随机整数。


当前回答

上面引用了一些优雅的算法,但这里有一种方法可以接近它,尽管它可能是迂回的。我假设的值是从0开始的。

R2 =给出小于2的随机数生成器(样本空间= {0,1}) R8 =给出小于8的随机数生成器(样本空间= {0,1,2,3,4,5,6,7})

为了从R2生成R8,您将运行R2三次,并将所有3次运行的组合结果作为3位二进制数使用。下面是R2运行三次时的值范围:

0, 0, 0 --> 0 . . 1, 1, 1 --> 7

现在要从R8生成R7,我们只需再次运行R7,如果它返回7:

int R7() {
  do {
    x = R8();
  } while (x > 6)
  return x;
}

迂回的解决方案是从R5生成R2(就像我们从R8生成R7一样),然后从R2生成R8,然后从R8生成R7。

其他回答

与Martin的答案相似,但却很少抛弃熵:

int rand7(void) {
  static int m = 1;
  static int r = 0;

  for (;;) {
    while (m <= INT_MAX / 5) {
      r = r + m * (rand5() - 1);
      m = m * 5;
    }
    int q = m / 7;
    if (r < q * 7) {
      int i = r % 7;
      r = r / 7;
      m = q;
      return i + 1;
    }
    r = r - q * 7;
    m = m - q * 7;
  }
}

在这里,我们在0到m-1之间建立一个随机值,并尝试通过添加尽可能多的状态来最大化m,而不会溢出(INT_MAX是C中适合int的最大值,或者您可以将其替换为任何在您的语言和体系结构中有意义的大值)。

然后;如果r落在能被7整除的最大可能区间内,那么它包含一个可行的结果,我们可以将这个区间除以7,取余数作为我们的结果,并将剩余的值返回到熵池。否则r在另一个不均匀的区间内我们就必须抛弃这个不拟合区间重新启动熵池。

与这里的流行答案相比,它调用rand5()的频率平均减少了一半。

为了提高性能,可以将除法分解为琐碎的比特旋转和lut。

这里似乎没有提到的另一个答案:

int rand7() {
  int r = 7 / 2;
  for (int i = 0; i < 28; i++)
    r = ((rand5() - 1) * 7 + r) / 5;
  return r + 1;
}

在每次迭代中,r是一个0到6之间的随机值。它被追加(以7为基数)到一个0到4(包括4)之间的随机值,结果除以5,得到一个0到6(包括6)范围内的新随机值。R开始时有很大的偏差(R = 3是非常有偏差的!),但每次迭代都将偏差除以5。

这种方法不是完全均匀的;然而,偏差是微乎其微的。数量级为1/(2**64)这种方法的重要之处在于它具有恒定的执行时间(假设rand5()也具有恒定的执行时间)。理论上不需要担心一个不走运的调用可能永远迭代地选择坏值。


此外,还有一个讽刺的回答(有意无意,它已经被覆盖了):

1-5已经在1-7的范围内,因此下面是一个有效的实现:

int rand7() {
  return rand5();
}

问题没有要求均匀分布。

下面是一个利用c++ 11特性的答案

#include <functional>
#include <iostream>
#include <ostream>
#include <random>

int main()
{
    std::random_device rd;
    unsigned long seed = rd();
    std::cout << "seed = " << seed << std::endl;

    std::mt19937 engine(seed);

    std::uniform_int_distribution<> dist(1, 5);
    auto rand5 = std::bind(dist, engine);

    const int n = 20;
    for (int i = 0; i != n; ++i)
    {
        std::cout << rand5() << " ";
    }
    std::cout << std::endl;

    // Use a lambda expression to define rand7
    auto rand7 = [&rand5]()->int
    {
        for (int result = 0; ; result = 0)
        {
            // Take advantage of the fact that
            // 5**6 = 15625 = 15624 + 1 = 7 * (2232) + 1.
            // So we only have to discard one out of every 15625 numbers generated.

            // Generate a 6-digit number in base 5
            for (int i = 0; i != 6; ++i)
            {
                result = 5 * result + (rand5() - 1);
            }

            // result is in the range [0, 15625)
            if (result == 15625 - 1)
            {
                // Discard this number
                continue;
            }

            // We now know that result is in the range [0, 15624), a range that can
            // be divided evenly into 7 buckets guaranteeing uniformity
            result /= 2232;
            return 1 + result;
        }
    };

    for (int i = 0; i != n; ++i)
    {
        std::cout << rand7() << " ";
    }
    std::cout << std::endl;

    return 0;
}

我想到了一个解决这个问题的有趣方法,想和大家分享一下。

function rand7() {

    var returnVal = 4;

    for (var n=0; n<3; n++) {
        var rand = rand5();

        if (rand==1||rand==2){
            returnVal+=1;
        }
        else if (rand==3||rand==4) {
            returnVal-=1;
        }
    }

    return returnVal;
}

我构建了一个测试函数,循环rand7() 10,000次,将所有返回值相加,然后除以10,000。如果rand7()工作正常,我们计算的平均值应该是4 -例如,(1+2+3+4+5+6+7 / 7)= 4。在做了多次测试后,平均值确实是4:)

rand7() = (rand5()+rand5()+rand5()+rand5()+rand5()+rand5()+rand5())%7+1

编辑:这并不奏效。误差约为千分之二(假设是完美的rand5)。桶得到:

value   Count  Error%
1       11158  -0.0035
2       11144  -0.0214
3       11144  -0.0214
4       11158  -0.0035
5       11172  +0.0144
6       11177  +0.0208
7       11172  +0.0144

通过转换到的和

n   Error%
10  +/- 1e-3,
12  +/- 1e-4,
14  +/- 1e-5,
16  +/- 1e-6,
...
28  +/- 3e-11

似乎每增加2就增加一个数量级

BTW:上面的误差表不是通过采样产生的,而是通过以下递归关系产生的:

P [x,n]是给定n次调用rand5,输出=x可能发生的次数。

  p[1,1] ... p[5,1] = 1
  p[6,1] ... p[7,1] = 0

  p[1,n] = p[7,n-1] + p[6,n-1] + p[5,n-1] + p[4,n-1] + p[3,n-1]
  p[2,n] = p[1,n-1] + p[7,n-1] + p[6,n-1] + p[5,n-1] + p[4,n-1]
  p[3,n] = p[2,n-1] + p[1,n-1] + p[7,n-1] + p[6,n-1] + p[5,n-1]
  p[4,n] = p[3,n-1] + p[2,n-1] + p[1,n-1] + p[7,n-1] + p[6,n-1]
  p[5,n] = p[4,n-1] + p[3,n-1] + p[2,n-1] + p[1,n-1] + p[7,n-1]
  p[6,n] = p[5,n-1] + p[4,n-1] + p[3,n-1] + p[2,n-1] + p[1,n-1]
  p[7,n] = p[6,n-1] + p[5,n-1] + p[4,n-1] + p[3,n-1] + p[2,n-1]