给定一个函数,它产生的是1到5之间的随机整数,写一个函数,它产生的是1到7之间的随机整数。
当前回答
你需要的函数是rand1_7(),我写了rand1_5(),这样你就可以测试它并绘制它。
import numpy
def rand1_5():
return numpy.random.randint(5)+1
def rand1_7():
q = 0
for i in xrange(7): q+= rand1_5()
return q%7 + 1
其他回答
面对这么复杂的答案,我觉得自己很蠢。
为什么不能:
int random1_to_7()
{
return (random1_to_5() * 7) / 5;
}
?
如果我们考虑尝试给出最有效答案的附加约束,即给定一个长度为m(1-5)的均匀分布整数的输入流I,输出一个长度为m(1-7)的均匀分布整数的流O,长度为L(m)。
最简单的分析方法是将流I和O分别视为5元数和7元数。这是通过主答案的思想来实现的,即取流a1, a2, a3,…- > a1 + a2 + 5 * 5 ^ 2 * a3 + . .流O也是如此。
然后如果我们取长度为m的输入流的一段,选n s.t, 5^m-7^n=c,其中c>0,且尽可能小。然后有一个从长度为m的输入流到1到5^m的整数的统一映射,还有一个从1到7^n的整数到长度为n的输出流的统一映射,当映射的整数超过7^n时,我们可能不得不从输入流中丢失一些情况。
这就给出了L(m)的值约为m (log5/log7)也就是。82米。
上述分析的难点是方程5^m-7^n=c,它不容易精确求解,而在1到5^m的均匀值超过7^n的情况下,我们失去了效率。
问题是如何接近m (log5/log7)的最佳可能值。例如,当这个数字接近一个整数时,我们能否找到一种方法来实现这个精确的整数值输出?
如果5^m-7^n=c,那么从输入流中,我们有效地生成了一个从0到(5^m)-1的均匀随机数,并且不使用任何高于7^n的值。但是,这些值可以被保存并再次使用。它们有效地生成了从1到5^m-7^n的统一数字序列。所以我们可以尝试使用这些,并将它们转换成7位数,这样我们就可以创建更多的输出值。
如果我们让T7(X)是由大小为X的均匀输入导出的随机(1-7)整数的输出序列的平均长度,并假设5^m=7^n0+7^n1+7^n2+…+ 7 ^ nr + s, s < 7。
那么T7(5^m)=n0x7^n0/5^m + ((5^m-7^n0)/5^m) T7(5^m-7^n0)因为我们有一个无长度序列,概率为7^n0/5^m,残差长度为5^m-7^n0,概率为(5^m-7^n0)/5^m)。
如果我们一直代入,我们得到:
T7(5^m) = n0x7^n0/5^m + n1x7^n1/5^m + ... + nrx7^nr/5^m = (n0x7^n0 + n1x7^n1 + ... + nrx7^nr)/5^m
因此
L(m)=T7(5^m)=(n0x7^n0 + n1x7^n1 + ... + nrx7^nr)/(7^n0+7^n1+7^n2+...+7^nr+s)
另一种说法是:
If 5^m has 7-ary representation `a0+a1*7 + a2*7^2 + a3*7^3+...+ar*7^r
Then L(m) = (a1*7 + 2a2*7^2 + 3a3*7^3+...+rar*7^r)/(a0+a1*7 + a2*7^2 + a3*7^3+...+ar*7^r)
最好的情况是上面的原始情况,即5^m=7^n+s,其中s<7。
然后机械师》(5 ^ m) = nx (7 ^ n) / (7 ^ n + s) = o (n + 1) = m (Log5 / Log7) + o(1)美国之前。
最坏的情况是我们只能找到k和s.t 5^m = kx7+s。
Then T7(5^m) = 1x(k.7)/(k.7+s) = 1+o(1)
其他情况介于两者之间。看看对于很大的m,我们能做得多好,也就是说,我们能多好地得到误差项,这将是很有趣的:
T7(5^m) = m (Log5/Log7)+e(m)
一般来说,似乎不可能实现e(m)=o(1)但希望我们可以证明e(m)=o(m)。
整个问题取决于5^m的7位数字对不同m值的分布。
我相信有很多理论涵盖了这一点,我可能会在某个时候看一看并报告。
Here's a solution that fits entirely within integers and is within about 4% of optimal (i.e. uses 1.26 random numbers in {0..4} for every one in {0..6}). The code's in Scala, but the math should be reasonably clear in any language: you take advantage of the fact that 7^9 + 7^8 is very close to 5^11. So you pick an 11 digit number in base 5, and then interpret it as a 9 digit number in base 7 if it's in range (giving 9 base 7 numbers), or as an 8 digit number if it's over the 9 digit number, etc.:
abstract class RNG {
def apply(): Int
}
class Random5 extends RNG {
val rng = new scala.util.Random
var count = 0
def apply() = { count += 1 ; rng.nextInt(5) }
}
class FiveSevener(five: RNG) {
val sevens = new Array[Int](9)
var nsevens = 0
val to9 = 40353607;
val to8 = 5764801;
val to7 = 823543;
def loadSevens(value: Int, count: Int) {
nsevens = 0;
var remaining = value;
while (nsevens < count) {
sevens(nsevens) = remaining % 7
remaining /= 7
nsevens += 1
}
}
def loadSevens {
var fivepow11 = 0;
var i=0
while (i<11) { i+=1 ; fivepow11 = five() + fivepow11*5 }
if (fivepow11 < to9) { loadSevens(fivepow11 , 9) ; return }
fivepow11 -= to9
if (fivepow11 < to8) { loadSevens(fivepow11 , 8) ; return }
fivepow11 -= to8
if (fivepow11 < 3*to7) loadSevens(fivepow11 % to7 , 7)
else loadSevens
}
def apply() = {
if (nsevens==0) loadSevens
nsevens -= 1
sevens(nsevens)
}
}
如果你将一个测试粘贴到解释器中(实际上是REPL),你会得到:
scala> val five = new Random5
five: Random5 = Random5@e9c592
scala> val seven = new FiveSevener(five)
seven: FiveSevener = FiveSevener@143c423
scala> val counts = new Array[Int](7)
counts: Array[Int] = Array(0, 0, 0, 0, 0, 0, 0)
scala> var i=0 ; while (i < 100000000) { counts( seven() ) += 1 ; i += 1 }
i: Int = 100000000
scala> counts
res0: Array[Int] = Array(14280662, 14293012, 14281286, 14284836, 14287188,
14289332, 14283684)
scala> five.count
res1: Int = 125902876
分布很好,很平坦(在每个箱子中,10^8的1/7大约在10k范围内,就像预期的近似高斯分布一样)。
rand25() =5*(rand5()-1) + rand5()
rand7() {
while(true) {
int r = rand25();
if (r < 21) return r%3;
}
}
为什么这样做:循环永远运行的概率是0。
Here is a solution that tries to minimize the number of calls to rand5() while keeping the implementation simple and efficient; in particular, it does not require arbitrary large integers unlike Adam Rosenfield’s second answer. It exploits the fact that 23/19 = 1.21052... is a good rational approximation to log(7)/log(5) = 1.20906..., thus we can generate 19 random elements of {1,...,7} out of 23 random elements of {1,...,5} by rejection sampling with only a small rejection probability. On average, the algorithm below takes about 1.266 calls to rand5() for each call to rand7(). If the distribution of rand5() is uniform, so is rand7().
uint_fast64_t pool;
int capacity = 0;
void new_batch (void)
{
uint_fast64_t r;
int i;
do {
r = 0;
for (i = 0; i < 23; i++)
r = 5 * r + (rand5() - 1);
} while (r >= 11398895185373143ULL); /* 7**19, a bit less than 5**23 */
pool = r;
capacity = 19;
}
int rand7 (void)
{
int r;
if (capacity == 0)
new_batch();
r = pool % 7;
pool /= 7;
capacity--;
return r + 1;
}
推荐文章
- 如何计算圆周长上的一点?
- 从整数流中找到运行中位数
- 在日历应用程序中建模重复事件的最佳方法是什么?
- 在任何情况下,您更喜欢高大o时间复杂度算法而不是低大o时间复杂度算法吗?
- 如何在c++中生成一个随机数?
- 如何使用JavaScript比较软件版本号?数量(只)
- 跳跃表vs.二叉搜索树
- 如何使四舍五入百分比加起来为100%
- 是否有可能得到一个函数的所有参数作为单一对象内的函数?
- 随机行选择在熊猫数据框架
- LL和LR解析之间的区别是什么?
- log(n!) = Θ(n·log(n))?
- C语言中位反转的高效算法(从MSB->LSB到LSB->MSB)
- 递归还是迭代?
- 从文件中读取随机行有什么简单的方法?