给定一个函数,它产生的是1到5之间的随机整数,写一个函数,它产生的是1到7之间的随机整数。
当前回答
你需要的函数是rand1_7(),我写了rand1_5(),这样你就可以测试它并绘制它。
import numpy
def rand1_5():
return numpy.random.randint(5)+1
def rand1_7():
q = 0
for i in xrange(7): q+= rand1_5()
return q%7 + 1
其他回答
这个解决方案受到了Rob McAfee的启发。 然而,它不需要循环,结果是一个均匀分布:
// Returns 1-5
var rnd5 = function(){
return parseInt(Math.random() * 5, 10) + 1;
}
// Helper
var lastEdge = 0;
// Returns 1-7
var rnd7 = function () {
var map = [
[ 1, 2, 3, 4, 5 ],
[ 6, 7, 1, 2, 3 ],
[ 4, 5, 6, 7, 1 ],
[ 2, 3, 4, 5, 6 ],
[ 7, 0, 0, 0, 0 ]
];
var result = map[rnd5() - 1][rnd5() - 1];
if (result > 0) {
return result;
}
lastEdge++;
if (lastEdge > 7 ) {
lastEdge = 1;
}
return lastEdge;
};
// Test the a uniform distribution
results = {}; for(i=0; i < 700000;i++) { var rand = rnd7(); results[rand] = results[rand] ? results[rand] + 1 : 1;}
console.log(results)
结果:[1:99560,2:99932,3:100355,4:100262,5:99603,6:100062,7:100226]
js小提琴
这里我们使用约定的rand(n) -> [0, n - 1]
从我读到的许多答案中,它们要么提供了一致性,要么提供了暂停保证,但不能同时提供(adam rosenfeld的第二个答案可能)。
然而,这样做是可能的。我们基本上有这样的分布:
这给[0-6]上的分布留下了一个漏洞:5和6没有 发生的概率。想象一下,现在我们试图通过移动 概率分布和求和。
事实上,我们可以把初始分布平移1,然后 重复将得到的分布与移位的初始分布相加 2,然后3,以此类推,直到7,不包括在内(我们涵盖了整个范围)。 如下图所示。颜色的顺序,对应 步骤,是蓝色->绿色->青色->白色->品红->黄色->红色。
因为每个插槽由7个移位分布中的5个覆盖(移位从 0到6),因为我们假设随机数是独立于1的 Ran5()呼叫另一个,我们获得
p(x) = 5 / 35 = 1 / 7 for all x in [0, 6]
这意味着,给定来自ran5()的7个独立随机数,我们可以 计算一个在[0-6]范围内具有均匀概率的随机数。 实际上是ran5()概率 分布甚至不需要均匀,只要样本是均匀的 独立(所以每次试验的分布保持不变) 同样,这也适用于5和7之外的其他数字。
这为我们提供了以下python函数:
def rand_range_transform(rands):
"""
returns a uniform random number in [0, len(rands) - 1]
if all r in rands are independent random numbers from the same uniform distribution
"""
return sum((x + i) for i, x in enumerate(rands)) % len(rands) # a single modulo outside the sum is enough in modulo arithmetic
可以这样使用:
rand5 = lambda : random.randrange(5)
def rand7():
return rand_range_transform([rand5() for _ in range(7)])
如果我们调用rand7() 70000次,我们可以得到:
max: 6 min: 0 mean: 2.99711428571 std: 2.00194697049
0: 10019
1: 10016
2: 10071
3: 10044
4: 9775
5: 10042
6: 10033
这很好,尽管远非完美。事实上,我们的一个假设是 在这个实现中很可能是false:我们使用一个PRNG,因此,结果 的值依赖于上一个结果。
也就是说,使用一个真正随机的数字来源,输出也应该是 真正随机的。这个算法在任何情况下都终止。
但这是有代价的:我们需要为一个rand7()调用7次rand5() 调用。
这里允许作业题吗?
这个函数进行粗略的“以5为基数”的数学运算,生成0到6之间的数字。
function rnd7() {
do {
r1 = rnd5() - 1;
do {
r2=rnd5() - 1;
} while (r2 > 1);
result = r2 * 5 + r1;
} while (result > 6);
return result + 1;
}
function Rand7
put 200 into x
repeat while x > 118
put ((random(5)-1) * 25) + ((random(5)-1) * 5) + (random(5)-1) into x
end repeat
return (x mod 7) + 1
end Rand7
3次调用Rand5,平均125次中只重复6次。
把它想象成一个5x5x5的3D数组,一遍又一遍地填满1到7,还有6个空格。重新滚动空白。rand5调用在该数组中创建一个以5为基数的三位索引。
4D或更高的n维数组的重复次数会更少,但这意味着对rand5函数的更多调用将成为标准。你会在更高维度上得到递减的效率回报。在我看来,三个似乎是一个很好的折衷方案,但我还没有对它们进行测试。它是特定于rand5实现的。
extern int r5();
int r7() {
return ((r5() & 0x01) << 2 ) | ((r5() & 0x01) << 1 ) | (r5() & 0x01);
}