给定一个函数,它产生的是1到5之间的随机整数,写一个函数,它产生的是1到7之间的随机整数。


当前回答

你需要的函数是rand1_7(),我写了rand1_5(),这样你就可以测试它并绘制它。

import numpy
def rand1_5():
    return numpy.random.randint(5)+1

def rand1_7():
    q = 0
    for i in xrange(7):  q+= rand1_5()
    return q%7 + 1

其他回答

这类似于@RobMcAfee,除了我使用魔术数字而不是2维数组。

int rand7() {
    int m = 1203068;
    int r = (m >> (rand5() - 1) * 5 + rand5() - 1) & 7;

    return (r > 0) ? r : rand7();
}

如果我们考虑尝试给出最有效答案的附加约束,即给定一个长度为m(1-5)的均匀分布整数的输入流I,输出一个长度为m(1-7)的均匀分布整数的流O,长度为L(m)。

最简单的分析方法是将流I和O分别视为5元数和7元数。这是通过主答案的思想来实现的,即取流a1, a2, a3,…- > a1 + a2 + 5 * 5 ^ 2 * a3 + . .流O也是如此。

然后如果我们取长度为m的输入流的一段,选n s.t, 5^m-7^n=c,其中c>0,且尽可能小。然后有一个从长度为m的输入流到1到5^m的整数的统一映射,还有一个从1到7^n的整数到长度为n的输出流的统一映射,当映射的整数超过7^n时,我们可能不得不从输入流中丢失一些情况。

这就给出了L(m)的值约为m (log5/log7)也就是。82米。

上述分析的难点是方程5^m-7^n=c,它不容易精确求解,而在1到5^m的均匀值超过7^n的情况下,我们失去了效率。

问题是如何接近m (log5/log7)的最佳可能值。例如,当这个数字接近一个整数时,我们能否找到一种方法来实现这个精确的整数值输出?

如果5^m-7^n=c,那么从输入流中,我们有效地生成了一个从0到(5^m)-1的均匀随机数,并且不使用任何高于7^n的值。但是,这些值可以被保存并再次使用。它们有效地生成了从1到5^m-7^n的统一数字序列。所以我们可以尝试使用这些,并将它们转换成7位数,这样我们就可以创建更多的输出值。

如果我们让T7(X)是由大小为X的均匀输入导出的随机(1-7)整数的输出序列的平均长度,并假设5^m=7^n0+7^n1+7^n2+…+ 7 ^ nr + s, s < 7。

那么T7(5^m)=n0x7^n0/5^m + ((5^m-7^n0)/5^m) T7(5^m-7^n0)因为我们有一个无长度序列,概率为7^n0/5^m,残差长度为5^m-7^n0,概率为(5^m-7^n0)/5^m)。

如果我们一直代入,我们得到:

T7(5^m) = n0x7^n0/5^m + n1x7^n1/5^m + ... + nrx7^nr/5^m  = (n0x7^n0 + n1x7^n1 + ... + nrx7^nr)/5^m

因此

L(m)=T7(5^m)=(n0x7^n0 + n1x7^n1 + ... + nrx7^nr)/(7^n0+7^n1+7^n2+...+7^nr+s)

另一种说法是:

If 5^m has 7-ary representation `a0+a1*7 + a2*7^2 + a3*7^3+...+ar*7^r
Then L(m) = (a1*7 + 2a2*7^2 + 3a3*7^3+...+rar*7^r)/(a0+a1*7 + a2*7^2 + a3*7^3+...+ar*7^r)

最好的情况是上面的原始情况,即5^m=7^n+s,其中s<7。

然后机械师》(5 ^ m) = nx (7 ^ n) / (7 ^ n + s) = o (n + 1) = m (Log5 / Log7) + o(1)美国之前。

最坏的情况是我们只能找到k和s.t 5^m = kx7+s。

Then T7(5^m) = 1x(k.7)/(k.7+s) = 1+o(1)

其他情况介于两者之间。看看对于很大的m,我们能做得多好,也就是说,我们能多好地得到误差项,这将是很有趣的:

T7(5^m) = m (Log5/Log7)+e(m)

一般来说,似乎不可能实现e(m)=o(1)但希望我们可以证明e(m)=o(m)。

整个问题取决于5^m的7位数字对不同m值的分布。

我相信有很多理论涵盖了这一点,我可能会在某个时候看一看并报告。

如果有人能就这一点给我反馈,那就太酷了,我使用了没有assert模式的JUNIT,因为在Eclipse中运行它很容易,也很快速,我也可以只定义一个主方法。顺便说一下,我假设rand5给出的值为0-4,加上1将得到1-5,rand7也是如此……所以讨论应该是解决方案,它的分布,而不是它是从0-4还是1-5…

package random;

import java.util.Random;

import org.junit.Test;

public class RandomTest {


    @Test
    public void testName() throws Exception {
        long times = 100000000;
        int indexes[] = new int[7];
        for(int i = 0; i < times; i++) {
            int rand7 = rand7();
            indexes[rand7]++;
        }

        for(int i = 0; i < 7; i++)
            System.out.println("Value " + i + ": " + indexes[i]);
    }


    public int rand7() {
        return (rand5() + rand5() + rand5() + rand5() + rand5() + rand5() + rand5()) % 7;
    }


    public int rand5() {
        return new Random().nextInt(5);
    }


}

当我运行它时,我得到这样的结果:

Value 0: 14308087
Value 1: 14298303
Value 2: 14279731
Value 3: 14262533
Value 4: 14269749
Value 5: 14277560
Value 6: 14304037

这似乎是一个非常公平的分配,不是吗?

如果我将rand5()添加更少或更多次(其中次数不能被7整除),分布会清楚地显示偏移量。例如,将rand5()相加3次:

Value 0: 15199685
Value 1: 14402429
Value 2: 12795649
Value 3: 12796957
Value 4: 14402252
Value 5: 15202778
Value 6: 15200250

因此,这将导致以下结果:

public int rand(int range) {
    int randomValue = 0;
    for(int i = 0; i < range; i++) {
        randomValue += rand5();
    }
    return randomValue % range;

}

然后,我可以更进一步:

public static final int ORIGN_RANGE = 5;
public static final int DEST_RANGE  = 7;

@Test
public void testName() throws Exception {
    long times = 100000000;
    int indexes[] = new int[DEST_RANGE];
    for(int i = 0; i < times; i++) {
        int rand7 = convertRand(DEST_RANGE, ORIGN_RANGE);
        indexes[rand7]++;
    }

    for(int i = 0; i < DEST_RANGE; i++)
        System.out.println("Value " + i + ": " + indexes[i]);
}


public int convertRand(int destRange, int originRange) {
    int randomValue = 0;
    for(int i = 0; i < destRange; i++) {
        randomValue += rand(originRange);
    }
    return randomValue % destRange;

}


public int rand(int range) {
    return new Random().nextInt(range);
}

我尝试用不同的值替换destRange和originRange(甚至ORIGIN为7,DEST为13),我得到了这样的分布:

Value 0: 7713763
Value 1: 7706552
Value 2: 7694697
Value 3: 7695319
Value 4: 7688617
Value 5: 7681691
Value 6: 7674798
Value 7: 7680348
Value 8: 7685286
Value 9: 7683943
Value 10: 7690283
Value 11: 7699142
Value 12: 7705561

从这里我可以得出的结论是,你可以通过求和起始随机“目的地”时间来将任意随机改变为任意随机。这将得到一种高斯分布(中间值更有可能,边缘值更不常见)。然而,目标模量似乎均匀地分布在这个高斯分布中…如果能得到数学家的反馈就太好了……

最酷的是,成本是100%可预测的和恒定的,而其他解决方案导致无限循环的概率很小……

Here is a solution that tries to minimize the number of calls to rand5() while keeping the implementation simple and efficient; in particular, it does not require arbitrary large integers unlike Adam Rosenfield’s second answer. It exploits the fact that 23/19 = 1.21052... is a good rational approximation to log(7)/log(5) = 1.20906..., thus we can generate 19 random elements of {1,...,7} out of 23 random elements of {1,...,5} by rejection sampling with only a small rejection probability. On average, the algorithm below takes about 1.266 calls to rand5() for each call to rand7(). If the distribution of rand5() is uniform, so is rand7().

uint_fast64_t pool;

int capacity = 0;

void new_batch (void)
{
  uint_fast64_t r;
  int i;

  do {
    r = 0;
    for (i = 0; i < 23; i++)
      r = 5 * r + (rand5() - 1);
  } while (r >= 11398895185373143ULL);  /* 7**19, a bit less than 5**23 */

  pool = r;
  capacity = 19;
}

int rand7 (void)
{
  int r;

  if (capacity == 0)
    new_batch();

  r = pool % 7;
  pool /= 7;
  capacity--;

  return r + 1;
}

通过使用滚动总数,您可以同时

保持平均分配;而且 不需要牺牲随机序列中的任何元素。

这两个问题都是简单的rand(5)+rand(5)…类型的解决方案。下面的Python代码展示了如何实现它(其中大部分是证明发行版)。

import random
x = []
for i in range (0,7):
    x.append (0)
t = 0
tt = 0
for i in range (0,700000):
    ########################################
    #####            qq.py             #####
    r = int (random.random () * 5)
    t = (t + r) % 7
    ########################################
    #####       qq_notsogood.py        #####
    #r = 20
    #while r > 6:
        #r =     int (random.random () * 5)
        #r = r + int (random.random () * 5)
    #t = r
    ########################################
    x[t] = x[t] + 1
    tt = tt + 1
high = x[0]
low = x[0]
for i in range (0,7):
    print "%d: %7d %.5f" % (i, x[i], 100.0 * x[i] / tt)
    if x[i] < low:
        low = x[i]
    if x[i] > high:
        high = x[i]
diff = high - low
print "Variation = %d (%.5f%%)" % (diff, 100.0 * diff / tt)

这个输出显示了结果:

pax$ python qq.py
0:   99908 14.27257
1:  100029 14.28986
2:  100327 14.33243
3:  100395 14.34214
4:   99104 14.15771
5:   99829 14.26129
6:  100408 14.34400
Variation = 1304 (0.18629%)

pax$ python qq.py
0:   99547 14.22100
1:  100229 14.31843
2:  100078 14.29686
3:   99451 14.20729
4:  100284 14.32629
5:  100038 14.29114
6:  100373 14.33900
Variation = 922 (0.13171%)

pax$ python qq.py
0:  100481 14.35443
1:   99188 14.16971
2:  100284 14.32629
3:  100222 14.31743
4:   99960 14.28000
5:   99426 14.20371
6:  100439 14.34843
Variation = 1293 (0.18471%)

一个简单的rand(5)+rand(5),忽略那些返回大于6的情况,其典型变化为18%,是上面所示方法的100倍:

pax$ python qq_notsogood.py
0:   31756 4.53657
1:   63304 9.04343
2:   95507 13.64386
3:  127825 18.26071
4:  158851 22.69300
5:  127567 18.22386
6:   95190 13.59857
Variation = 127095 (18.15643%)

pax$ python qq_notsogood.py
0:   31792 4.54171
1:   63637 9.09100
2:   95641 13.66300
3:  127627 18.23243
4:  158751 22.67871
5:  126782 18.11171
6:   95770 13.68143
Variation = 126959 (18.13700%)

pax$ python qq_notsogood.py
0:   31955 4.56500
1:   63485 9.06929
2:   94849 13.54986
3:  127737 18.24814
4:  159687 22.81243
5:  127391 18.19871
6:   94896 13.55657
Variation = 127732 (18.24743%)

并且,根据Nixuz的建议,我已经清理了脚本,所以您可以提取并使用rand7…材料:

import random

# rand5() returns 0 through 4 inclusive.

def rand5():
    return int (random.random () * 5)

# rand7() generator returns 0 through 6 inclusive (using rand5()).

def rand7():
    rand7ret = 0
    while True:
        rand7ret = (rand7ret + rand5()) % 7
        yield rand7ret

# Number of test runs.

count = 700000

# Work out distribution.

distrib = [0,0,0,0,0,0,0]
rgen =rand7()
for i in range (0,count):
    r = rgen.next()
    distrib[r] = distrib[r] + 1

# Print distributions and calculate variation.

high = distrib[0]
low = distrib[0]
for i in range (0,7):
    print "%d: %7d %.5f" % (i, distrib[i], 100.0 * distrib[i] / count)
    if distrib[i] < low:
        low = distrib[i]
    if distrib[i] > high:
        high = distrib[i]
diff = high - low
print "Variation = %d (%.5f%%)" % (diff, 100.0 * diff / count)