给定一个函数,它产生的是1到5之间的随机整数,写一个函数,它产生的是1到7之间的随机整数。
当前回答
//返回0-5之间概率相等的随机数 函数rand5() { return Math.floor(Math.random() * 6); } //返回0-7之间概率相等的随机数 函数rand7() { If (rand5() % 2 == 0 && rand5() % 2 == 0) { 返回6 + rand5() % 2; }其他{ 返回rand5 (); } } console.log (rand7 ());
其他回答
我想到了一个解决这个问题的有趣方法,想和大家分享一下。
function rand7() {
var returnVal = 4;
for (var n=0; n<3; n++) {
var rand = rand5();
if (rand==1||rand==2){
returnVal+=1;
}
else if (rand==3||rand==4) {
returnVal-=1;
}
}
return returnVal;
}
我构建了一个测试函数,循环rand7() 10,000次,将所有返回值相加,然后除以10,000。如果rand7()工作正常,我们计算的平均值应该是4 -例如,(1+2+3+4+5+6+7 / 7)= 4。在做了多次测试后,平均值确实是4:)
假设rand(n)在这里表示“从0到n-1均匀分布的随机整数”,下面是使用Python的randint的代码示例,它具有这种效果。它只使用randint(5)和常量来产生randint(7)的效果。其实有点傻
from random import randint
sum = 7
while sum >= 7:
first = randint(0,5)
toadd = 9999
while toadd>1:
toadd = randint(0,5)
if toadd:
sum = first+5
else:
sum = first
assert 7>sum>=0
print sum
假设rand给予所有位相同的权重,然后用上界进行掩码。
int i = rand(5) ^ (rand(5) & 2);
Rand(5)只能返回:1b, 10b, 11b, 100b, 101b。有时候你只需要考虑设置2位。
以下是我的回答:
static struct rand_buffer {
unsigned v, count;
} buf2, buf3;
void push (struct rand_buffer *buf, unsigned n, unsigned v)
{
buf->v = buf->v * n + v;
++buf->count;
}
#define PUSH(n, v) push (&buf##n, n, v)
int rand16 (void)
{
int v = buf2.v & 0xf;
buf2.v >>= 4;
buf2.count -= 4;
return v;
}
int rand9 (void)
{
int v = buf3.v % 9;
buf3.v /= 9;
buf3.count -= 2;
return v;
}
int rand7 (void)
{
if (buf3.count >= 2) {
int v = rand9 ();
if (v < 7)
return v % 7 + 1;
PUSH (2, v - 7);
}
for (;;) {
if (buf2.count >= 4) {
int v = rand16 ();
if (v < 14) {
PUSH (2, v / 7);
return v % 7 + 1;
}
PUSH (2, v - 14);
}
// Get a number between 0 & 25
int v = 5 * (rand5 () - 1) + rand5 () - 1;
if (v < 21) {
PUSH (3, v / 7);
return v % 7 + 1;
}
v -= 21;
PUSH (2, v & 1);
PUSH (2, v >> 1);
}
}
它比其他的稍微复杂一点,但我相信它最小化了对rand5的调用。与其他解决方案一样,它有小概率会循环很长时间。
从一个扩大浮动范围的链接来到这里。这个更有趣。而不是我是如何得出结论的,我突然想到,对于一个给定的随机整数生成函数f,以“基数”b(在这种情况下是4,我会告诉为什么),它可以展开如下:
(b^0 * f() + b^1 * f() + b^2 * f() .... b^p * f()) / (b^(p+1) - 1) * (b-1)
这将把随机生成器转换为FLOAT生成器。我将在这里定义2个参数b和p。虽然这里的“基数”是4,但b实际上可以是任何东西,它也可以是无理数等p,我称之为精度是你想要的浮点生成器的良好粒度的程度。可以把这看作是对rand7的每次调用对rand5的调用数。
但我意识到,如果你把b设为底数+1(在这种情况下是4+1 = 5),这是一个最佳点,你会得到均匀的分布。首先摆脱这个1-5生成器,它实际上是rand4() + 1:
function rand4(){
return Math.random() * 5 | 0;
}
为了达到这个目的,你可以用rand5()-1替换rand4
接下来是将rand4从整数生成器转换为浮点生成器
function toFloat(f,b,p){
b = b || 2;
p = p || 3;
return (Array.apply(null,Array(p))
.map(function(d,i){return f()})
.map(function(d,i){return Math.pow(b,i)*d})
.reduce(function(ac,d,i){return ac += d;}))
/
(
(Math.pow(b,p) - 1)
/(b-1)
)
}
这将把我写的第一个函数应用到一个给定的rand函数。试一试:
toFloat(rand4) //1.4285714285714286 base = 2, precision = 3
toFloat(rand4,3,4) //0.75 base = 3, precision = 4
toFloat(rand4,4,5) //3.7507331378299122 base = 4, precision = 5
toFloat(rand4,5,6) //0.2012288786482335 base = 5, precision =6
...
现在,您可以将这个浮动范围(0-4 include)转换为任何其他浮动范围,然后将其降级为整数。这里我们的底是4,因为我们处理的是rand4,因此b=5的值会给你一个均匀分布。当b增长超过4时,你将开始在分布中引入周期性间隙。我测试了从2到8的b值,每个值都有3000分,并与原生数学进行了比较。随机的javascript,在我看来甚至比本机本身更好:
http://jsfiddle.net/ibowankenobi/r57v432t/
对于上面的链接,单击分布顶部的“bin”按钮以减小分箱大小。最后一个图表是原生数学。随机的,第四个d=5是均匀的。
在你得到浮动范围后,要么与7相乘并抛出小数部分,要么与7相乘,减去0.5并四舍五入:
((toFloat(rand4,5,6)/4 * 7) | 0) + 1 ---> occasionally you'll get 8 with 1/4^6 probability.
Math.round((toFloat(rand4,5,6)/4 * 7) - 0.5) + 1 --> between 1 and 7