给定一个函数,它产生的是1到5之间的随机整数,写一个函数,它产生的是1到7之间的随机整数。


当前回答

//返回0-5之间概率相等的随机数 函数rand5() { return Math.floor(Math.random() * 6); } //返回0-7之间概率相等的随机数 函数rand7() { If (rand5() % 2 == 0 && rand5() % 2 == 0) { 返回6 + rand5() % 2; }其他{ 返回rand5 (); } } console.log (rand7 ());

其他回答

假设rand给予所有位相同的权重,然后用上界进行掩码。

int i = rand(5) ^ (rand(5) & 2);

Rand(5)只能返回:1b, 10b, 11b, 100b, 101b。有时候你只需要考虑设置2位。

什么是简单的解决方案?(rand5() + rand5()) % 7 + 1 减少内存使用或在较慢的CPU上运行的有效解决方案是什么?是的,这是有效的,因为它只调用rand5()两次,空间复杂度为O(1)

考虑rand5()给出从1到5(包括)的随机数。 (1 + 1) % 7 + 1 = 3 (1 + 2) % 7 + 1 = 4 (1 + 3) % 7 + 1 = 5 (1 + 4) % 7 + 1 = 6 (1 + 5) % 7 + 1 = 7

(2 + 1) % 7 + 1 = 4 (2 + 2) % 7 + 1 = 5 (2 + 3) % 7 + 1 = 6 (2 + 4) % 7 + 1 = 7 (2 + 5) % 7 + 1 = 1 .

(5 + 1) % 7 + 1 = 7 (5 + 2) % 7 + 1 = 1 (5 + 3) % 7 + 1 = 2 (5 + 4) % 7 + 1 = 3 (5 + 5) % 7 + 1 = 4 .

等等

我知道它已经被回答了,但这似乎是可以工作的,但我不能告诉你它是否有偏见。我的“测试”表明,这至少是合理的。

也许亚当·罗森菲尔德会好心地评论一下?

我(天真?)的想法是这样的:

积累rand5,直到有足够的随机位形成rand7。这最多需要2兰特。为了得到rand7,我使用累计值mod 7。

为了避免累加器溢出,由于累加器是mod 7,那么我取累加器的mod 7:

(5a + rand5) % 7 = (k*7 + (5a%7) + rand5) % 7 = ( (5a%7) + rand5) % 7

rand7()函数如下:

(我让rand5的范围是0-4,rand7也是0-6。)

int rand7(){
  static int    a=0;
  static int    e=0;
  int       r;
  a = a * 5 + rand5();
  e = e + 5;        // added 5/7ths of a rand7 number
  if ( e<7 ){
    a = a * 5 + rand5();
    e = e + 5;  // another 5/7ths
  }
  r = a % 7;
  e = e - 7;        // removed a rand7 number
  a = a % 7;
  return r;
}

编辑:增加了1亿次试验的结果。

'Real' rand函数mod 5或7

rand5 : 平均=1.999802 0:20003944 1:19999889 2:20003690 3:19996938 4:19995539 Rand7 : 平均=3.000111 0:14282851 1:14282879 2:14284554 3:14288546 4:14292388 5:14288736 6:14280046

我的边缘7

平均数看起来不错,数字分布也不错。

Randt : 平均=3.000080 0:14288793 1:14280135 2:14287848 3:14285277 4:14286341 5:14278663 6:14292943

(我剽窃了亚当·罗森菲尔德的答案,使其运行速度提高了7%左右。)

假设rand5()返回分布相等的{0,1,2,3,4}中的一个,目标是返回分布相等的{0,1,2,3,4,5,6}。

int rand7() {
  i = 5 * rand5() + rand5();
  max = 25;
  //i is uniform among {0 ... max-1}
  while(i < max%7) {
    //i is uniform among {0 ... (max%7 - 1)}
    i *= 5;
    i += rand5(); //i is uniform {0 ... (((max%7)*5) - 1)}
    max %= 7;
    max *= 5; //once again, i is uniform among {0 ... max-1}
  }
  return(i%7);
}

我们在跟踪这个循环在变量max中所能产生的最大值。如果到目前为止的结果在max%7和max-1之间,那么结果将均匀分布在该范围内。如果不是,则使用余数,余数是0到max%7-1之间的随机数,然后再次调用rand()来生成一个新的数字和一个新的max。然后我们重新开始。

编辑:在这个方程中,期望调用rand5()的次数是x:

x =  2     * 21/25
   + 3     *  4/25 * 14/20
   + 4     *  4/25 *  6/20 * 28/30
   + 5     *  4/25 *  6/20 *  2/30 * 7/10
   + 6     *  4/25 *  6/20 *  2/30 * 3/10 * 14/15
   + (6+x) *  4/25 *  6/20 *  2/30 * 3/10 *  1/15
x = about 2.21 calls to rand5()
package CareerCup;

public class RangeTransform {
 static int counter = (int)(Math.random() * 5 + 1);

 private int func() {
  return (int) (Math.random() * 5 + 1);
 }

 private int getMultiplier() {
  return counter % 5 + 1;
 }

 public int rangeTransform() {
  counter++;
  int count = getMultiplier();
  int mult = func() + 5 * count;
  System.out.println("Mult is : " + 5 * count);
  return (mult) % 7 + 1;
 }

 /**
  * @param args
  */
 public static void main(String[] args) {
  // TODO Auto-generated method stub
  RangeTransform rangeTransform = new RangeTransform();
  for (int i = 0; i < 35; i++)
   System.out.println("Val is : " + rangeTransform.rangeTransform());
 }
}