给定一个函数,它产生的是1到5之间的随机整数,写一个函数,它产生的是1到7之间的随机整数。


当前回答

//返回0-5之间概率相等的随机数 函数rand5() { return Math.floor(Math.random() * 6); } //返回0-7之间概率相等的随机数 函数rand7() { If (rand5() % 2 == 0 && rand5() % 2 == 0) { 返回6 + rand5() % 2; }其他{ 返回rand5 (); } } console.log (rand7 ());

其他回答

在php中

function rand1to7() {
    do {
        $output_value = 0;
        for ($i = 0; $i < 28; $i++) {
            $output_value += rand1to5();
        }
    while ($output_value != 140);
    $output_value -= 12;
    return floor($output_value / 16);
}

循环生成16到127之间的随机数,除以16生成1到7.9375之间的浮点数,然后舍入得到1到7之间的整数。如果我没记错的话,得到7个结果中的任何一个的概率都是16/112。

rand7() = (rand5()+rand5()+rand5()+rand5()+rand5()+rand5()+rand5())%7+1

编辑:这并不奏效。误差约为千分之二(假设是完美的rand5)。桶得到:

value   Count  Error%
1       11158  -0.0035
2       11144  -0.0214
3       11144  -0.0214
4       11158  -0.0035
5       11172  +0.0144
6       11177  +0.0208
7       11172  +0.0144

通过转换到的和

n   Error%
10  +/- 1e-3,
12  +/- 1e-4,
14  +/- 1e-5,
16  +/- 1e-6,
...
28  +/- 3e-11

似乎每增加2就增加一个数量级

BTW:上面的误差表不是通过采样产生的,而是通过以下递归关系产生的:

P [x,n]是给定n次调用rand5,输出=x可能发生的次数。

  p[1,1] ... p[5,1] = 1
  p[6,1] ... p[7,1] = 0

  p[1,n] = p[7,n-1] + p[6,n-1] + p[5,n-1] + p[4,n-1] + p[3,n-1]
  p[2,n] = p[1,n-1] + p[7,n-1] + p[6,n-1] + p[5,n-1] + p[4,n-1]
  p[3,n] = p[2,n-1] + p[1,n-1] + p[7,n-1] + p[6,n-1] + p[5,n-1]
  p[4,n] = p[3,n-1] + p[2,n-1] + p[1,n-1] + p[7,n-1] + p[6,n-1]
  p[5,n] = p[4,n-1] + p[3,n-1] + p[2,n-1] + p[1,n-1] + p[7,n-1]
  p[6,n] = p[5,n-1] + p[4,n-1] + p[3,n-1] + p[2,n-1] + p[1,n-1]
  p[7,n] = p[6,n-1] + p[5,n-1] + p[4,n-1] + p[3,n-1] + p[2,n-1]

产生近似均匀分布的常数时间解。诀窍是625恰好能被7整除当你增加到这个范围时,你可以得到均匀的分布。

编辑:我的错,我算错了,但我不会把它拉下来,以防有人觉得它有用/有趣。毕竟它确实有效……:)

int rand5()
{
    return (rand() % 5) + 1;
}

int rand25()
{ 
    return (5 * (rand5() - 1) + rand5());
}

int rand625()
{
    return (25 * (rand25() - 1) + rand25());
}

int rand7()
{
    return ((625 * (rand625() - 1) + rand625()) - 1) % 7 + 1;
}

这个答案更像是一个从Rand5函数中获得最大熵的实验。因此,T有点不清楚,几乎可以肯定比其他实现慢得多。

假设0-4为均匀分布,0-6为均匀分布:

public class SevenFromFive
{
  public SevenFromFive()
  {
    // this outputs a uniform ditribution but for some reason including it 
    // screws up the output distribution
    // open question Why?
    this.fifth = new ProbabilityCondensor(5, b => {});
    this.eigth = new ProbabilityCondensor(8, AddEntropy);
  } 

  private static Random r = new Random();
  private static uint Rand5()
  {
    return (uint)r.Next(0,5);
  }

  private class ProbabilityCondensor
  {
    private readonly int samples;
    private int counter;
    private int store;
    private readonly Action<bool> output;

    public ProbabilityCondensor(int chanceOfTrueReciprocal,
      Action<bool> output)
    {
      this.output = output;
      this.samples = chanceOfTrueReciprocal - 1;  
    }

    public void Add(bool bit)
    {
      this.counter++;
      if (bit)
        this.store++;   
      if (counter == samples)
      {
        bool? e;
        if (store == 0)
          e = false;
        else if (store == 1)
          e = true;
        else
          e = null;// discard for now       
        counter = 0;
        store = 0;
        if (e.HasValue)
          output(e.Value);
      }
    }
  }

  ulong buffer = 0;
  const ulong Mask = 7UL;
  int bitsAvail = 0;
  private readonly ProbabilityCondensor fifth;
  private readonly ProbabilityCondensor eigth;

  private void AddEntropy(bool bit)
  {
    buffer <<= 1;
    if (bit)
      buffer |= 1;      
    bitsAvail++;
  }

  private void AddTwoBitsEntropy(uint u)
  {
    buffer <<= 2;
    buffer |= (u & 3UL);    
    bitsAvail += 2;
  }

  public uint Rand7()
  {
    uint selection;   
    do
    {
      while (bitsAvail < 3)
      {
        var x = Rand5();
        if (x < 4)
        {
          // put the two low order bits straight in
          AddTwoBitsEntropy(x);
          fifth.Add(false);
        }
        else
        { 
          fifth.Add(true);
        }
      }
      // read 3 bits
      selection = (uint)((buffer & Mask));
      bitsAvail -= 3;     
      buffer >>= 3;
      if (selection == 7)
        eigth.Add(true);
      else
        eigth.Add(false);
    }
    while (selection == 7);   
    return selection;
  }
}

每次调用Rand5添加到缓冲区的比特数目前是4/5 * 2,所以是1.6。 如果包括1/5的概率值,则增加0.05,因此增加1.65,但请参阅代码中的注释,我不得不禁用它。

调用Rand7消耗的比特数= 3 + 1/8 *(3 + 1/8 *(3 + 1/8 *(… 这是3 + 3/8 + 3/64 + 3/512…大约是3.42

通过从7中提取信息,我每次调用回收1/8*1/7位,大约0.018

这使得每次调用的净消耗为3.4比特,这意味着每一次Rand7调用到Rand5的比率为2.125。最优值应该是2.1。

我可以想象这种方法比这里的许多其他方法都要慢得多,除非调用Rand5的代价非常昂贵(比如调用一些外部熵源)。

就是这样,均匀分布,零rand5调用。

def rand7:
    seed += 1
    if seed >= 7:
        seed = 0
    yield seed

需要事先播种。