给定一个函数,它产生的是1到5之间的随机整数,写一个函数,它产生的是1到7之间的随机整数。
当前回答
//返回0-5之间概率相等的随机数 函数rand5() { return Math.floor(Math.random() * 6); } //返回0-7之间概率相等的随机数 函数rand7() { If (rand5() % 2 == 0 && rand5() % 2 == 0) { 返回6 + rand5() % 2; }其他{ 返回rand5 (); } } console.log (rand7 ());
其他回答
这里允许作业题吗?
这个函数进行粗略的“以5为基数”的数学运算,生成0到6之间的数字。
function rnd7() {
do {
r1 = rnd5() - 1;
do {
r2=rnd5() - 1;
} while (r2 > 1);
result = r2 * 5 + r1;
} while (result > 6);
return result + 1;
}
PHP解决方案
<?php
function random_5(){
return rand(1,5);
}
function random_7(){
$total = 0;
for($i=0;$i<7;$i++){
$total += random_5();
}
return ($total%7)+1;
}
echo random_7();
?>
产生近似均匀分布的常数时间解。诀窍是625恰好能被7整除当你增加到这个范围时,你可以得到均匀的分布。
编辑:我的错,我算错了,但我不会把它拉下来,以防有人觉得它有用/有趣。毕竟它确实有效……:)
int rand5()
{
return (rand() % 5) + 1;
}
int rand25()
{
return (5 * (rand5() - 1) + rand5());
}
int rand625()
{
return (25 * (rand25() - 1) + rand25());
}
int rand7()
{
return ((625 * (rand625() - 1) + rand625()) - 1) % 7 + 1;
}
我玩了一下,我为这个Rand(7)算法写了“测试环境”。例如,如果你想尝试哪种分布给你的算法,或者需要多少次迭代才能生成所有不同的随机值(对于Rand(7) 1-7),你可以使用它。
我的核心算法是:
return (Rand5() + Rand5()) % 7 + 1;
和亚当·罗森菲尔德的分布一样均匀。(我将其包含在代码片段中)
private static int Rand7WithRand5()
{
//PUT YOU FAVOURITE ALGORITHM HERE//
//1. Stackoverflow winner
int i;
do
{
i = 5 * (Rand5() - 1) + Rand5(); // i is now uniformly random between 1 and 25
} while (i > 21);
// i is now uniformly random between 1 and 21
return i % 7 + 1;
//My 2 cents
//return (Rand5() + Rand5()) % 7 + 1;
}
这个“测试环境”可以采用任何Rand(n)算法并测试和评估它(分布和速度)。只需将代码放入“Rand7WithRand5”方法并运行代码片段。
一些观察:
亚当·罗森菲尔德(Adam Rosenfield)的算法并不比我的算法分布得更好。不管怎样,两种算法的分布都很糟糕。 本机Rand7(随机的。Next(1,8))完成,因为它在大约200+迭代中生成了给定间隔内的所有成员,Rand7WithRand5算法的顺序为10k(约30-70k) 真正的挑战不是编写从Rand(5)生成Rand(7)的方法,而是生成几乎均匀分布的值。
面对这么复杂的答案,我觉得自己很蠢。
为什么不能:
int random1_to_7()
{
return (random1_to_5() * 7) / 5;
}
?