给定一个函数,它产生的是1到5之间的随机整数,写一个函数,它产生的是1到7之间的随机整数。


当前回答

简单的解决方案已经被很好地覆盖了:为一个random7结果取两个random5样本,如果结果超出了产生均匀分布的范围,就重新做一次。如果你的目标是减少对random5的调用次数,这是非常浪费的——对于每个random7输出,对random5的平均调用次数是2.38,而不是2,这是由于丢弃样本的数量。

你可以通过使用更多的random5输入一次生成多个random7输出来做得更好。对于使用31位整数计算的结果,最优结果是使用12次调用random5生成9个random7输出,平均每个输出调用1.34次。它是高效的,因为244140625个结果中只有2018983个需要废弃,或者不到1%。

Python演示:

def random5():
    return random.randint(1, 5)

def random7gen(n):
    count = 0
    while n > 0:
        samples = 6 * 7**9
        while samples >= 6 * 7**9:
            samples = 0
            for i in range(12):
                samples = samples * 5 + random5() - 1
                count += 1
        samples //= 6
        for outputs in range(9):
            yield samples % 7 + 1, count
            samples //= 7
            count = 0
            n -= 1
            if n == 0: break

>>> from collections import Counter
>>> Counter(x for x,i in random7gen(10000000))
Counter({2: 1430293, 4: 1429298, 1: 1428832, 7: 1428571, 3: 1428204, 5: 1428134, 6: 1426668})
>>> sum(i for x,i in random7gen(10000000)) / 10000000.0
1.344606

其他回答

与Martin的答案相似,但却很少抛弃熵:

int rand7(void) {
  static int m = 1;
  static int r = 0;

  for (;;) {
    while (m <= INT_MAX / 5) {
      r = r + m * (rand5() - 1);
      m = m * 5;
    }
    int q = m / 7;
    if (r < q * 7) {
      int i = r % 7;
      r = r / 7;
      m = q;
      return i + 1;
    }
    r = r - q * 7;
    m = m - q * 7;
  }
}

在这里,我们在0到m-1之间建立一个随机值,并尝试通过添加尽可能多的状态来最大化m,而不会溢出(INT_MAX是C中适合int的最大值,或者您可以将其替换为任何在您的语言和体系结构中有意义的大值)。

然后;如果r落在能被7整除的最大可能区间内,那么它包含一个可行的结果,我们可以将这个区间除以7,取余数作为我们的结果,并将剩余的值返回到熵池。否则r在另一个不均匀的区间内我们就必须抛弃这个不拟合区间重新启动熵池。

与这里的流行答案相比,它调用rand5()的频率平均减少了一半。

为了提高性能,可以将除法分解为琐碎的比特旋转和lut。

int rand7() {
    int value = rand5()
              + rand5() * 2
              + rand5() * 3
              + rand5() * 4
              + rand5() * 5
              + rand5() * 6;
    return value%7;
}

与选定的解决方案不同,该算法将在常数时间内运行。然而,它对rand5的调用比所选解决方案的平均运行时间多2次。

请注意,这个生成器并不完美(数字0比任何其他数字都有0.0064%的可能性),但对于大多数实际目的,保证恒定的时间可能比这种不准确性更重要。

解释

这个解源于数字15624能被7整除的事实,因此,如果我们可以随机且均匀地生成从0到15624的数字,然后对7取余,我们就可以得到一个近乎均匀的rand7生成器。将rand5滚动6次,将0到15624之间的数字统一生成,并使用这些数字组成以5为基数的数字,如下所示:

rand5 * 5^5 + rand5 * 5^4 + rand5 * 5^3 + rand5 * 5^2 + rand5 * 5 + rand5

mod 7的属性允许我们稍微简化一下方程:

5^5 = 3 mod 7
5^4 = 2 mod 7
5^3 = 6 mod 7
5^2 = 4 mod 7
5^1 = 5 mod 7

So

rand5 * 5^5 + rand5 * 5^4 + rand5 * 5^3 + rand5 * 5^2 + rand5 * 5 + rand5

就变成了

rand5 * 3 + rand5 * 2 + rand5 * 6 + rand5 * 4 + rand5 * 5 + rand5

理论

15624这个数字不是随机选择的,而是可以用费马小定理来发现的,该定理指出,如果p是质数,那么

a^(p-1) = 1 mod p

这就得到,

(5^6)-1 = 0 mod 7

(5^6)-1等于

4 * 5^5 + 4 * 5^4 + 4 * 5^3 + 4 * 5^2 + 4 * 5 + 4

这是一个以5为底的数,因此我们可以看到,这种方法可以用于从任何随机数发生器到任何其他随机数发生器。尽管在使用指数p-1时总是会引入对0的小偏差。

为了更准确地推广这种方法,我们可以有这样一个函数:

def getRandomconverted(frm, to):
    s = 0
    for i in range(to):
        s += getRandomUniform(frm)*frm**i
    mx = 0
    for i in range(to):
        mx = (to-1)*frm**i 
    mx = int(mx/to)*to # maximum value till which we can take mod
    if s < mx:
        return s%to
    else:
        return getRandomconverted(frm, to)

这是我想到的答案,但这些复杂的答案让我认为这是完全错误的/:))

import random

def rand5():
    return float(random.randint(0,5))

def rand7():
    random_val = rand5()
    return float(random.randint((random_val-random_val),7))

print rand7()

下面是Adam回答的Python实现。

import random

def rand5():
    return random.randint(1, 5)

def rand7():
    while True:
        r = 5 * (rand5() - 1) + rand5()
        #r is now uniformly random between 1 and 25
        if (r <= 21):
            break
    #result is now uniformly random between 1 and 7
    return r % 7 + 1

我喜欢把我正在研究的算法扔进Python,这样我就可以摆弄它们,我想我把它贴在这里,希望它对外面的人有用,而不是花很长时间来拼凑。

def rand5():
    return random.randint(1,5)    #return random integers from 1 to 5

def rand7():
    rand = rand5()+rand5()-1
    if rand > 7:                  #if numbers > 7, call rand7() again
        return rand7()
    print rand%7 + 1

我想这将是最简单的解决方案,但到处都有人建议5*rand5() + rand5() - 5,如http://www.geeksforgeeks.org/generate-integer-from-1-to-7-with-equal-probability/。 有人能解释一下rand5()+rand5()-1有什么问题吗