给定一个函数,它产生的是1到5之间的随机整数,写一个函数,它产生的是1到7之间的随机整数。


当前回答

什么是简单的解决方案?(rand5() + rand5()) % 7 + 1 减少内存使用或在较慢的CPU上运行的有效解决方案是什么?是的,这是有效的,因为它只调用rand5()两次,空间复杂度为O(1)

考虑rand5()给出从1到5(包括)的随机数。 (1 + 1) % 7 + 1 = 3 (1 + 2) % 7 + 1 = 4 (1 + 3) % 7 + 1 = 5 (1 + 4) % 7 + 1 = 6 (1 + 5) % 7 + 1 = 7

(2 + 1) % 7 + 1 = 4 (2 + 2) % 7 + 1 = 5 (2 + 3) % 7 + 1 = 6 (2 + 4) % 7 + 1 = 7 (2 + 5) % 7 + 1 = 1 .

(5 + 1) % 7 + 1 = 7 (5 + 2) % 7 + 1 = 1 (5 + 3) % 7 + 1 = 2 (5 + 4) % 7 + 1 = 3 (5 + 5) % 7 + 1 = 4 .

等等

其他回答

这里有很多解决方案没有产生均匀分布,许多评论指出了这一点,但这个问题并没有把它作为一个要求。最简单的解决方案是:

int rand_7() { return rand_5(); }

1 - 5范围内的随机整数显然在1 - 7范围内。从技术上讲,最简单的解决方法是返回一个常数,但那太琐碎了。

然而,我认为rand_5函数的存在是一个转移注意力的问题。假设问题是“生成一个均匀分布的伪随机数生成器,输出范围为1 - 7”。这是一个简单的问题(技术上不简单,但已经解决了,所以您可以查阅它)。

另一方面,如果问题被解释为你实际上有一个真正的随机数生成器,用于范围为1 - 5的整数(而不是伪随机),那么解决方案是:

1) examine the rand_5 function
2) understand how it works
3) profit
package CareerCup;

public class RangeTransform {
 static int counter = (int)(Math.random() * 5 + 1);

 private int func() {
  return (int) (Math.random() * 5 + 1);
 }

 private int getMultiplier() {
  return counter % 5 + 1;
 }

 public int rangeTransform() {
  counter++;
  int count = getMultiplier();
  int mult = func() + 5 * count;
  System.out.println("Mult is : " + 5 * count);
  return (mult) % 7 + 1;
 }

 /**
  * @param args
  */
 public static void main(String[] args) {
  // TODO Auto-generated method stub
  RangeTransform rangeTransform = new RangeTransform();
  for (int i = 0; i < 35; i++)
   System.out.println("Val is : " + rangeTransform.rangeTransform());
 }
}

我玩了一下,我为这个Rand(7)算法写了“测试环境”。例如,如果你想尝试哪种分布给你的算法,或者需要多少次迭代才能生成所有不同的随机值(对于Rand(7) 1-7),你可以使用它。

我的核心算法是:

return (Rand5() + Rand5()) % 7 + 1;

和亚当·罗森菲尔德的分布一样均匀。(我将其包含在代码片段中)

private static int Rand7WithRand5()
{
    //PUT YOU FAVOURITE ALGORITHM HERE//

    //1. Stackoverflow winner
    int i;
    do
    {
        i = 5 * (Rand5() - 1) + Rand5(); // i is now uniformly random between 1 and 25
    } while (i > 21);
    // i is now uniformly random between 1 and 21
    return i % 7 + 1;

    //My 2 cents
    //return (Rand5() + Rand5()) % 7 + 1;
}

这个“测试环境”可以采用任何Rand(n)算法并测试和评估它(分布和速度)。只需将代码放入“Rand7WithRand5”方法并运行代码片段。

一些观察:

亚当·罗森菲尔德(Adam Rosenfield)的算法并不比我的算法分布得更好。不管怎样,两种算法的分布都很糟糕。 本机Rand7(随机的。Next(1,8))完成,因为它在大约200+迭代中生成了给定间隔内的所有成员,Rand7WithRand5算法的顺序为10k(约30-70k) 真正的挑战不是编写从Rand(5)生成Rand(7)的方法,而是生成几乎均匀分布的值。

这类似于@RobMcAfee,除了我使用魔术数字而不是2维数组。

int rand7() {
    int m = 1203068;
    int r = (m >> (rand5() - 1) * 5 + rand5() - 1) & 7;

    return (r > 0) ? r : rand7();
}
int randbit( void )
{
    while( 1 )
    {
        int r = rand5();
        if( r <= 4 ) return(r & 1);
    }
}

int randint( int nbits )
{
    int result = 0;
    while( nbits-- )
    {
        result = (result<<1) | randbit();
    }
    return( result );
}

int rand7( void )
{
    while( 1 )
    {
        int r = randint( 3 ) + 1;
        if( r <= 7 ) return( r );
    }
}