给定一个函数,它产生的是1到5之间的随机整数,写一个函数,它产生的是1到7之间的随机整数。
当前回答
什么是简单的解决方案?(rand5() + rand5()) % 7 + 1 减少内存使用或在较慢的CPU上运行的有效解决方案是什么?是的,这是有效的,因为它只调用rand5()两次,空间复杂度为O(1)
考虑rand5()给出从1到5(包括)的随机数。 (1 + 1) % 7 + 1 = 3 (1 + 2) % 7 + 1 = 4 (1 + 3) % 7 + 1 = 5 (1 + 4) % 7 + 1 = 6 (1 + 5) % 7 + 1 = 7
(2 + 1) % 7 + 1 = 4 (2 + 2) % 7 + 1 = 5 (2 + 3) % 7 + 1 = 6 (2 + 4) % 7 + 1 = 7 (2 + 5) % 7 + 1 = 1 .
(5 + 1) % 7 + 1 = 7 (5 + 2) % 7 + 1 = 1 (5 + 3) % 7 + 1 = 2 (5 + 4) % 7 + 1 = 3 (5 + 5) % 7 + 1 = 4 .
等等
其他回答
为什么不除以5再乘以7,然后四舍五入呢?(当然,你必须使用浮点数no.)
它比其他解决方案更简单、更可靠(真的吗?)例如,在Python中:
def ranndomNo7():
import random
rand5 = random.randint(4) # Produces range: [0, 4]
rand7 = int(rand5 / 5 * 7) # /5, *7, +0.5 and floor()
return rand7
这不是很容易吗?
在php中
function rand1to7() {
do {
$output_value = 0;
for ($i = 0; $i < 28; $i++) {
$output_value += rand1to5();
}
while ($output_value != 140);
$output_value -= 12;
return floor($output_value / 16);
}
循环生成16到127之间的随机数,除以16生成1到7.9375之间的浮点数,然后舍入得到1到7之间的整数。如果我没记错的话,得到7个结果中的任何一个的概率都是16/112。
对于范围[1,5]到[1,7],这相当于用一个5面骰子滚动一个7面骰子。
然而,如果不“浪费”随机性(或者在最坏的情况下永远运行),就无法做到这一点,因为7的所有质因数(即7)都不能整除5。因此,最好的方法是使用拒绝抽样来获得任意接近于不“浪费”随机性的结果(例如,将多个5面骰子摇到5^n“足够接近”7的幂)。这个问题的解决方案已经在其他答案中给出了。
更一般地说,用p面骰子掷k面骰子的算法将不可避免地“浪费”随机性(并且在最坏的情况下永远运行),除非“每个质数能除k也能除p”,根据B. Kloeckner的“用骰子模拟骰子”中的引理3。例如,举一个更实际的例子,p是2的幂,k是任意的。在这种情况下,这种“浪费”和无限的运行时间是不可避免的,除非k也是2的幂。
我知道它已经被回答了,但这似乎是可以工作的,但我不能告诉你它是否有偏见。我的“测试”表明,这至少是合理的。
也许亚当·罗森菲尔德会好心地评论一下?
我(天真?)的想法是这样的:
积累rand5,直到有足够的随机位形成rand7。这最多需要2兰特。为了得到rand7,我使用累计值mod 7。
为了避免累加器溢出,由于累加器是mod 7,那么我取累加器的mod 7:
(5a + rand5) % 7 = (k*7 + (5a%7) + rand5) % 7 = ( (5a%7) + rand5) % 7
rand7()函数如下:
(我让rand5的范围是0-4,rand7也是0-6。)
int rand7(){
static int a=0;
static int e=0;
int r;
a = a * 5 + rand5();
e = e + 5; // added 5/7ths of a rand7 number
if ( e<7 ){
a = a * 5 + rand5();
e = e + 5; // another 5/7ths
}
r = a % 7;
e = e - 7; // removed a rand7 number
a = a % 7;
return r;
}
编辑:增加了1亿次试验的结果。
'Real' rand函数mod 5或7
rand5 : 平均=1.999802 0:20003944 1:19999889 2:20003690 3:19996938 4:19995539 Rand7 : 平均=3.000111 0:14282851 1:14282879 2:14284554 3:14288546 4:14292388 5:14288736 6:14280046
我的边缘7
平均数看起来不错,数字分布也不错。
Randt : 平均=3.000080 0:14288793 1:14280135 2:14287848 3:14285277 4:14286341 5:14278663 6:14292943
以下是我的发现:
Random5产生1~5的范围,随机分布 如果我们运行3次并将它们加在一起,我们将得到3~15个随机分布的范围 在3~15范围内执行算术 (3~15) - 1 = (2~14) (2~14)/2 = (1~7)
然后我们得到1~7的范围,这是我们正在寻找的Random7。