给定一个函数,它产生的是1到5之间的随机整数,写一个函数,它产生的是1到7之间的随机整数。


当前回答

只要没有剩下7种可能性,就再画一个随机数,将可能性数乘以5。在Perl中:

$num = 0;
$possibilities = 1;

sub rand7
{
  while( $possibilities < 7 )
  {
    $num = $num * 5 + int(rand(5));
    $possibilities *= 5;
  }
  my $result = $num % 7;
  $num = int( $num / 7 );
  $possibilities /= 7;
  return $result;
}

其他回答

Here's a solution that fits entirely within integers and is within about 4% of optimal (i.e. uses 1.26 random numbers in {0..4} for every one in {0..6}). The code's in Scala, but the math should be reasonably clear in any language: you take advantage of the fact that 7^9 + 7^8 is very close to 5^11. So you pick an 11 digit number in base 5, and then interpret it as a 9 digit number in base 7 if it's in range (giving 9 base 7 numbers), or as an 8 digit number if it's over the 9 digit number, etc.:

abstract class RNG {
  def apply(): Int
}

class Random5 extends RNG {
  val rng = new scala.util.Random
  var count = 0
  def apply() = { count += 1 ; rng.nextInt(5) }
}

class FiveSevener(five: RNG) {
  val sevens = new Array[Int](9)
  var nsevens = 0
  val to9 = 40353607;
  val to8 = 5764801;
  val to7 = 823543;
  def loadSevens(value: Int, count: Int) {
    nsevens = 0;
    var remaining = value;
    while (nsevens < count) {
      sevens(nsevens) = remaining % 7
      remaining /= 7
      nsevens += 1
    }
  }
  def loadSevens {
    var fivepow11 = 0;
    var i=0
    while (i<11) { i+=1 ; fivepow11 = five() + fivepow11*5 }
    if (fivepow11 < to9) { loadSevens(fivepow11 , 9) ; return }
    fivepow11 -= to9
    if (fivepow11 < to8) { loadSevens(fivepow11 , 8) ; return }
    fivepow11 -= to8
    if (fivepow11 < 3*to7) loadSevens(fivepow11 % to7 , 7)
    else loadSevens
  }
  def apply() = {
    if (nsevens==0) loadSevens
    nsevens -= 1
    sevens(nsevens)
  }
}

如果你将一个测试粘贴到解释器中(实际上是REPL),你会得到:

scala> val five = new Random5
five: Random5 = Random5@e9c592

scala> val seven = new FiveSevener(five)
seven: FiveSevener = FiveSevener@143c423

scala> val counts = new Array[Int](7)
counts: Array[Int] = Array(0, 0, 0, 0, 0, 0, 0)

scala> var i=0 ; while (i < 100000000) { counts( seven() ) += 1 ; i += 1 }
i: Int = 100000000

scala> counts
res0: Array[Int] = Array(14280662, 14293012, 14281286, 14284836, 14287188,
14289332, 14283684)

scala> five.count
res1: Int = 125902876

分布很好,很平坦(在每个箱子中,10^8的1/7大约在10k范围内,就像预期的近似高斯分布一样)。

int ans = 0;
while (ans == 0) 
{
     for (int i=0; i<3; i++) 
     {
          while ((r = rand5()) == 3){};
          ans += (r < 3) >> i
     }
}

这个表达式足以得到1 - 7之间的随机整数

int j = ( rand5()*2 + 4 ) % 7 + 1;
int rand7()
{
    int zero_one_or_two = ( rand5() + rand5() - 1 ) % 3 ;
    return rand5() + zero_one_or_two ;
}

首先,我在1点上移动ramdom5() 6次,得到7个随机数。 其次,将7个数相加得到公和。 第三,除法的余数是7。 最后加1,得到从1到7的结果。 这个方法给出了在1到7的范围内获得数字的相等概率,除了1。1的概率略高。

public int random7(){
    Random random = new Random();
    //function (1 + random.nextInt(5)) is given
    int random1_5 = 1 + random.nextInt(5); // 1,2,3,4,5
    int random2_6 = 2 + random.nextInt(5); // 2,3,4,5,6
    int random3_7 = 3 + random.nextInt(5); // 3,4,5,6,7
    int random4_8 = 4 + random.nextInt(5); // 4,5,6,7,8
    int random5_9 = 5 + random.nextInt(5); // 5,6,7,8,9
    int random6_10 = 6 + random.nextInt(5); //6,7,8,9,10
    int random7_11 = 7 + random.nextInt(5); //7,8,9,10,11

    //sumOfRandoms is between 28 and 56
    int sumOfRandoms = random1_5 + random2_6 + random3_7 + 
                       random4_8 + random5_9 + random6_10 + random7_11;
    //result is number between 0 and 6, and
    //equals 0 if sumOfRandoms = 28 or 35 or 42 or 49 or 56 , 5 options
    //equals 1 if sumOfRandoms = 29 or 36 or 43 or 50, 4 options
    //equals 2 if sumOfRandoms = 30 or 37 or 44 or 51, 4 options
    //equals 3 if sumOfRandoms = 31 or 38 or 45 or 52, 4 options
    //equals 4 if sumOfRandoms = 32 or 39 or 46 or 53, 4 options
    //equals 5 if sumOfRandoms = 33 or 40 or 47 or 54, 4 options
    //equals 6 if sumOfRandoms = 34 or 41 or 48 or 55, 4 options
    //It means that the probabilities of getting numbers between 0 and 6 are almost equal.
    int result = sumOfRandoms % 7;
    //we should add 1 to move the interval [0,6] to the interval [1,7]
    return 1 + result;
}