给定一个函数,它产生的是1到5之间的随机整数,写一个函数,它产生的是1到7之间的随机整数。
当前回答
只要没有剩下7种可能性,就再画一个随机数,将可能性数乘以5。在Perl中:
$num = 0;
$possibilities = 1;
sub rand7
{
while( $possibilities < 7 )
{
$num = $num * 5 + int(rand(5));
$possibilities *= 5;
}
my $result = $num % 7;
$num = int( $num / 7 );
$possibilities /= 7;
return $result;
}
其他回答
这里有很多解决方案没有产生均匀分布,许多评论指出了这一点,但这个问题并没有把它作为一个要求。最简单的解决方案是:
int rand_7() { return rand_5(); }
1 - 5范围内的随机整数显然在1 - 7范围内。从技术上讲,最简单的解决方法是返回一个常数,但那太琐碎了。
然而,我认为rand_5函数的存在是一个转移注意力的问题。假设问题是“生成一个均匀分布的伪随机数生成器,输出范围为1 - 7”。这是一个简单的问题(技术上不简单,但已经解决了,所以您可以查阅它)。
另一方面,如果问题被解释为你实际上有一个真正的随机数生成器,用于范围为1 - 5的整数(而不是伪随机),那么解决方案是:
1) examine the rand_5 function
2) understand how it works
3) profit
就是这样,均匀分布,零rand5调用。
def rand7:
seed += 1
if seed >= 7:
seed = 0
yield seed
需要事先播种。
我想到了一个解决这个问题的有趣方法,想和大家分享一下。
function rand7() {
var returnVal = 4;
for (var n=0; n<3; n++) {
var rand = rand5();
if (rand==1||rand==2){
returnVal+=1;
}
else if (rand==3||rand==4) {
returnVal-=1;
}
}
return returnVal;
}
我构建了一个测试函数,循环rand7() 10,000次,将所有返回值相加,然后除以10,000。如果rand7()工作正常,我们计算的平均值应该是4 -例如,(1+2+3+4+5+6+7 / 7)= 4。在做了多次测试后,平均值确实是4:)
简单的解决方案已经被很好地覆盖了:为一个random7结果取两个random5样本,如果结果超出了产生均匀分布的范围,就重新做一次。如果你的目标是减少对random5的调用次数,这是非常浪费的——对于每个random7输出,对random5的平均调用次数是2.38,而不是2,这是由于丢弃样本的数量。
你可以通过使用更多的random5输入一次生成多个random7输出来做得更好。对于使用31位整数计算的结果,最优结果是使用12次调用random5生成9个random7输出,平均每个输出调用1.34次。它是高效的,因为244140625个结果中只有2018983个需要废弃,或者不到1%。
Python演示:
def random5():
return random.randint(1, 5)
def random7gen(n):
count = 0
while n > 0:
samples = 6 * 7**9
while samples >= 6 * 7**9:
samples = 0
for i in range(12):
samples = samples * 5 + random5() - 1
count += 1
samples //= 6
for outputs in range(9):
yield samples % 7 + 1, count
samples //= 7
count = 0
n -= 1
if n == 0: break
>>> from collections import Counter
>>> Counter(x for x,i in random7gen(10000000))
Counter({2: 1430293, 4: 1429298, 1: 1428832, 7: 1428571, 3: 1428204, 5: 1428134, 6: 1426668})
>>> sum(i for x,i in random7gen(10000000)) / 10000000.0
1.344606
这里似乎没有提到的另一个答案:
int rand7() {
int r = 7 / 2;
for (int i = 0; i < 28; i++)
r = ((rand5() - 1) * 7 + r) / 5;
return r + 1;
}
在每次迭代中,r是一个0到6之间的随机值。它被追加(以7为基数)到一个0到4(包括4)之间的随机值,结果除以5,得到一个0到6(包括6)范围内的新随机值。R开始时有很大的偏差(R = 3是非常有偏差的!),但每次迭代都将偏差除以5。
这种方法不是完全均匀的;然而,偏差是微乎其微的。数量级为1/(2**64)这种方法的重要之处在于它具有恒定的执行时间(假设rand5()也具有恒定的执行时间)。理论上不需要担心一个不走运的调用可能永远迭代地选择坏值。
此外,还有一个讽刺的回答(有意无意,它已经被覆盖了):
1-5已经在1-7的范围内,因此下面是一个有效的实现:
int rand7() {
return rand5();
}
问题没有要求均匀分布。