给定一个函数,它产生的是1到5之间的随机整数,写一个函数,它产生的是1到7之间的随机整数。
当前回答
只要没有剩下7种可能性,就再画一个随机数,将可能性数乘以5。在Perl中:
$num = 0;
$possibilities = 1;
sub rand7
{
while( $possibilities < 7 )
{
$num = $num * 5 + int(rand(5));
$possibilities *= 5;
}
my $result = $num % 7;
$num = int( $num / 7 );
$possibilities /= 7;
return $result;
}
其他回答
这个表达式足以得到1 - 7之间的随机整数
int j = ( rand5()*2 + 4 ) % 7 + 1;
面对这么复杂的答案,我觉得自己很蠢。
为什么不能:
int random1_to_7()
{
return (random1_to_5() * 7) / 5;
}
?
与Martin的答案相似,但却很少抛弃熵:
int rand7(void) {
static int m = 1;
static int r = 0;
for (;;) {
while (m <= INT_MAX / 5) {
r = r + m * (rand5() - 1);
m = m * 5;
}
int q = m / 7;
if (r < q * 7) {
int i = r % 7;
r = r / 7;
m = q;
return i + 1;
}
r = r - q * 7;
m = m - q * 7;
}
}
在这里,我们在0到m-1之间建立一个随机值,并尝试通过添加尽可能多的状态来最大化m,而不会溢出(INT_MAX是C中适合int的最大值,或者您可以将其替换为任何在您的语言和体系结构中有意义的大值)。
然后;如果r落在能被7整除的最大可能区间内,那么它包含一个可行的结果,我们可以将这个区间除以7,取余数作为我们的结果,并将剩余的值返回到熵池。否则r在另一个不均匀的区间内我们就必须抛弃这个不拟合区间重新启动熵池。
与这里的流行答案相比,它调用rand5()的频率平均减少了一半。
为了提高性能,可以将除法分解为琐碎的比特旋转和lut。
rand25() =5*(rand5()-1) + rand5()
rand7() {
while(true) {
int r = rand25();
if (r < 21) return r%3;
}
}
为什么这样做:循环永远运行的概率是0。
首先,我在1点上移动ramdom5() 6次,得到7个随机数。 其次,将7个数相加得到公和。 第三,除法的余数是7。 最后加1,得到从1到7的结果。 这个方法给出了在1到7的范围内获得数字的相等概率,除了1。1的概率略高。
public int random7(){
Random random = new Random();
//function (1 + random.nextInt(5)) is given
int random1_5 = 1 + random.nextInt(5); // 1,2,3,4,5
int random2_6 = 2 + random.nextInt(5); // 2,3,4,5,6
int random3_7 = 3 + random.nextInt(5); // 3,4,5,6,7
int random4_8 = 4 + random.nextInt(5); // 4,5,6,7,8
int random5_9 = 5 + random.nextInt(5); // 5,6,7,8,9
int random6_10 = 6 + random.nextInt(5); //6,7,8,9,10
int random7_11 = 7 + random.nextInt(5); //7,8,9,10,11
//sumOfRandoms is between 28 and 56
int sumOfRandoms = random1_5 + random2_6 + random3_7 +
random4_8 + random5_9 + random6_10 + random7_11;
//result is number between 0 and 6, and
//equals 0 if sumOfRandoms = 28 or 35 or 42 or 49 or 56 , 5 options
//equals 1 if sumOfRandoms = 29 or 36 or 43 or 50, 4 options
//equals 2 if sumOfRandoms = 30 or 37 or 44 or 51, 4 options
//equals 3 if sumOfRandoms = 31 or 38 or 45 or 52, 4 options
//equals 4 if sumOfRandoms = 32 or 39 or 46 or 53, 4 options
//equals 5 if sumOfRandoms = 33 or 40 or 47 or 54, 4 options
//equals 6 if sumOfRandoms = 34 or 41 or 48 or 55, 4 options
//It means that the probabilities of getting numbers between 0 and 6 are almost equal.
int result = sumOfRandoms % 7;
//we should add 1 to move the interval [0,6] to the interval [1,7]
return 1 + result;
}