给定一个函数,它产生的是1到5之间的随机整数,写一个函数,它产生的是1到7之间的随机整数。


当前回答

与Martin的答案相似,但却很少抛弃熵:

int rand7(void) {
  static int m = 1;
  static int r = 0;

  for (;;) {
    while (m <= INT_MAX / 5) {
      r = r + m * (rand5() - 1);
      m = m * 5;
    }
    int q = m / 7;
    if (r < q * 7) {
      int i = r % 7;
      r = r / 7;
      m = q;
      return i + 1;
    }
    r = r - q * 7;
    m = m - q * 7;
  }
}

在这里,我们在0到m-1之间建立一个随机值,并尝试通过添加尽可能多的状态来最大化m,而不会溢出(INT_MAX是C中适合int的最大值,或者您可以将其替换为任何在您的语言和体系结构中有意义的大值)。

然后;如果r落在能被7整除的最大可能区间内,那么它包含一个可行的结果,我们可以将这个区间除以7,取余数作为我们的结果,并将剩余的值返回到熵池。否则r在另一个不均匀的区间内我们就必须抛弃这个不拟合区间重新启动熵池。

与这里的流行答案相比,它调用rand5()的频率平均减少了一半。

为了提高性能,可以将除法分解为琐碎的比特旋转和lut。

其他回答

对于0-7的值,你有以下内容:

0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

从左到右,Rand5()有p(1) ={2/ 5,2 / 5,3 /5}。因此,如果我们补这些概率分布(~Rand5()),我们应该能够使用它来生成我们的数字。我稍后会给出解决方案。有人有什么想法吗?

R

下面是Adam回答的Python实现。

import random

def rand5():
    return random.randint(1, 5)

def rand7():
    while True:
        r = 5 * (rand5() - 1) + rand5()
        #r is now uniformly random between 1 and 25
        if (r <= 21):
            break
    #result is now uniformly random between 1 and 7
    return r % 7 + 1

我喜欢把我正在研究的算法扔进Python,这样我就可以摆弄它们,我想我把它贴在这里,希望它对外面的人有用,而不是花很长时间来拼凑。

因为1/7是一个以5为底的无限小数,所以没有(完全正确的)解可以在常数时间内运行。一个简单的解决方案是使用拒绝抽样,例如:


int i;
do
{
  i = 5 * (rand5() - 1) + rand5();  // i is now uniformly random between 1 and 25
} while(i > 21);
// i is now uniformly random between 1 and 21
return i % 7 + 1;  // result is now uniformly random between 1 and 7

这个循环的预期运行时间为25/21 = 1.19次迭代,但是永远循环的概率非常小。

我不喜欢从1开始的范围,所以我将从0开始:-)

unsigned rand5()
{
    return rand() % 5;
}

unsigned rand7()
{
    int r;

    do
    {
        r =         rand5();
        r = r * 5 + rand5();
        r = r * 5 + rand5();
        r = r * 5 + rand5();
        r = r * 5 + rand5();
        r = r * 5 + rand5();
    } while (r > 15623);

    return r / 2232;
}

Python:有一个简单的两行答案,它使用空间代数和模量的组合。这不是直观的。我对它的解释令人困惑,但却是正确的。

知道5*7=35 7/5 = 1余数为2。如何保证余数之和始终为0?5*[7/5 = 1余数2]——> 35/5 = 7余数0

想象一下,我们有一条丝带,缠在一根周长为7的杆子上。丝带需要35个单位才能均匀地缠绕。随机选择7个色带片段len=[1…5]。忽略换行的有效长度与将rand5()转换为rand7()的方法相同。

import numpy as np
import pandas as pd
# display is a notebook function FYI
def rand5(): ## random uniform int [1...5]
    return np.random.randint(1,6)

n_trials = 1000
samples = [rand5() for _ in range(n_trials)]

display(pd.Series(samples).value_counts(normalize=True))
# 4    0.2042
# 5    0.2041
# 2    0.2010
# 1    0.1981
# 3    0.1926
# dtype: float64
    
def rand7(): # magic algebra
    x = sum(rand5() for _ in range(7))
    return x%7 + 1

samples = [rand7() for _ in range(n_trials)]

display(pd.Series(samples).value_counts(normalize=False))
# 6    1475
# 2    1475
# 3    1456
# 1    1423
# 7    1419
# 4    1393
# 5    1359
# dtype: int64
    
df = pd.DataFrame([
    pd.Series([rand7() for _ in range(n_trials)]).value_counts(normalize=True)
    for _ in range(1000)
])
df.describe()
#      1    2   3   4   5   6   7
# count 1000.000000 1000.000000 1000.000000 1000.000000 1000.000000 1000.000000 1000.000000
# mean  0.142885    0.142928    0.142523    0.142266    0.142704    0.143048    0.143646
# std   0.010807    0.011526    0.010966    0.011223    0.011052    0.010983    0.011153
# min   0.112000    0.108000    0.101000    0.110000    0.100000    0.109000    0.110000
# 25%   0.135000    0.135000    0.135000    0.135000    0.135000    0.135000    0.136000
# 50%   0.143000    0.142000    0.143000    0.142000    0.143000    0.142000    0.143000
# 75%   0.151000    0.151000    0.150000    0.150000    0.150000    0.150000    0.151000
# max   0.174000    0.181000    0.175000    0.178000    0.189000    0.176000    0.179000