给定一个函数,它产生的是1到5之间的随机整数,写一个函数,它产生的是1到7之间的随机整数。
当前回答
这个解决方案不浪费任何熵,并给出了范围内第一个可用的真正随机数。随着每一次迭代,得不到答案的概率可证明地降低了。在N次迭代中得到答案的概率是0到max (5^N)之间的随机数小于该范围内7的最大倍数(max-max%7)的概率。必须迭代至少两次。但这对所有解都是成立的。
int random7() {
range = 1;
remainder = 0;
while (1) {
remainder = remainder * 5 + random5() - 1;
range = range * 5;
limit = range - (range % 7);
if (remainder < limit) return (remainder % 7) + 1;
remainder = remainder % 7;
range = range % 7;
}
}
数值上等价于:
r5=5;
num=random5()-1;
while (1) {
num=num*5+random5()-1;
r5=r5*5;
r7=r5-r5%7;
if (num<r7) return num%7+1;
}
第一个代码以模形式计算。第二个代码只是简单的数学。或者我在某个地方犯了错误。: -)
其他回答
面对这么复杂的答案,我觉得自己很蠢。
为什么不能:
int random1_to_7()
{
return (random1_to_5() * 7) / 5;
}
?
#!/usr/bin/env ruby
class Integer
def rand7
rand(6)+1
end
end
def rand5
rand(4)+1
end
x = rand5() # x => int between 1 and 5
y = x.rand7() # y => int between 1 and 7
..尽管这可能被认为是作弊。
简单高效:
int rand7 ( void )
{
return 4; // this number has been calculated using
// rand5() and is in the range 1..7
}
(灵感来自你最喜欢的“程序员”卡通?)
function Rand7
put 200 into x
repeat while x > 118
put ((random(5)-1) * 25) + ((random(5)-1) * 5) + (random(5)-1) into x
end repeat
return (x mod 7) + 1
end Rand7
3次调用Rand5,平均125次中只重复6次。
把它想象成一个5x5x5的3D数组,一遍又一遍地填满1到7,还有6个空格。重新滚动空白。rand5调用在该数组中创建一个以5为基数的三位索引。
4D或更高的n维数组的重复次数会更少,但这意味着对rand5函数的更多调用将成为标准。你会在更高维度上得到递减的效率回报。在我看来,三个似乎是一个很好的折衷方案,但我还没有对它们进行测试。它是特定于rand5实现的。
(我剽窃了亚当·罗森菲尔德的答案,使其运行速度提高了7%左右。)
假设rand5()返回分布相等的{0,1,2,3,4}中的一个,目标是返回分布相等的{0,1,2,3,4,5,6}。
int rand7() {
i = 5 * rand5() + rand5();
max = 25;
//i is uniform among {0 ... max-1}
while(i < max%7) {
//i is uniform among {0 ... (max%7 - 1)}
i *= 5;
i += rand5(); //i is uniform {0 ... (((max%7)*5) - 1)}
max %= 7;
max *= 5; //once again, i is uniform among {0 ... max-1}
}
return(i%7);
}
我们在跟踪这个循环在变量max中所能产生的最大值。如果到目前为止的结果在max%7和max-1之间,那么结果将均匀分布在该范围内。如果不是,则使用余数,余数是0到max%7-1之间的随机数,然后再次调用rand()来生成一个新的数字和一个新的max。然后我们重新开始。
编辑:在这个方程中,期望调用rand5()的次数是x:
x = 2 * 21/25
+ 3 * 4/25 * 14/20
+ 4 * 4/25 * 6/20 * 28/30
+ 5 * 4/25 * 6/20 * 2/30 * 7/10
+ 6 * 4/25 * 6/20 * 2/30 * 3/10 * 14/15
+ (6+x) * 4/25 * 6/20 * 2/30 * 3/10 * 1/15
x = about 2.21 calls to rand5()