给定一个函数,它产生的是1到5之间的随机整数,写一个函数,它产生的是1到7之间的随机整数。
当前回答
这个怎么样
rand5 () % + rand5 (2) + 2 (2) % + rand5 rand5 () (2) % + rand5 % + rand5 (2) 2
不确定这是均匀分布的。有什么建议吗?
其他回答
这里有很多解决方案没有产生均匀分布,许多评论指出了这一点,但这个问题并没有把它作为一个要求。最简单的解决方案是:
int rand_7() { return rand_5(); }
1 - 5范围内的随机整数显然在1 - 7范围内。从技术上讲,最简单的解决方法是返回一个常数,但那太琐碎了。
然而,我认为rand_5函数的存在是一个转移注意力的问题。假设问题是“生成一个均匀分布的伪随机数生成器,输出范围为1 - 7”。这是一个简单的问题(技术上不简单,但已经解决了,所以您可以查阅它)。
另一方面,如果问题被解释为你实际上有一个真正的随机数生成器,用于范围为1 - 5的整数(而不是伪随机),那么解决方案是:
1) examine the rand_5 function
2) understand how it works
3) profit
我玩了一下,我为这个Rand(7)算法写了“测试环境”。例如,如果你想尝试哪种分布给你的算法,或者需要多少次迭代才能生成所有不同的随机值(对于Rand(7) 1-7),你可以使用它。
我的核心算法是:
return (Rand5() + Rand5()) % 7 + 1;
和亚当·罗森菲尔德的分布一样均匀。(我将其包含在代码片段中)
private static int Rand7WithRand5()
{
//PUT YOU FAVOURITE ALGORITHM HERE//
//1. Stackoverflow winner
int i;
do
{
i = 5 * (Rand5() - 1) + Rand5(); // i is now uniformly random between 1 and 25
} while (i > 21);
// i is now uniformly random between 1 and 21
return i % 7 + 1;
//My 2 cents
//return (Rand5() + Rand5()) % 7 + 1;
}
这个“测试环境”可以采用任何Rand(n)算法并测试和评估它(分布和速度)。只需将代码放入“Rand7WithRand5”方法并运行代码片段。
一些观察:
亚当·罗森菲尔德(Adam Rosenfield)的算法并不比我的算法分布得更好。不管怎样,两种算法的分布都很糟糕。 本机Rand7(随机的。Next(1,8))完成,因为它在大约200+迭代中生成了给定间隔内的所有成员,Rand7WithRand5算法的顺序为10k(约30-70k) 真正的挑战不是编写从Rand(5)生成Rand(7)的方法,而是生成几乎均匀分布的值。
我想我有四个答案,两个给出了像@Adam Rosenfield那样的精确解决方案,但没有无限循环问题,另外两个几乎完美的解决方案,但执行速度比第一个更快。
最好的精确解决方案需要7次调用rand5,但为了理解,让我们继续。
方法一:精确
Adam的答案的优点在于它给出了一个完美的均匀分布,并且只需要两次调用rand5()的概率非常高(21/25)。然而,最坏的情况是无限循环。
下面的第一个解决方案也给出了一个完美的均匀分布,但总共需要对rand5进行42次调用。没有无限循环。
下面是一个R的实现:
rand5 <- function() sample(1:5,1)
rand7 <- function() (sum(sapply(0:6, function(i) i + rand5() + rand5()*2 + rand5()*3 + rand5()*4 + rand5()*5 + rand5()*6)) %% 7) + 1
对于不熟悉R的人,这里是一个简化版本:
rand7 = function(){
r = 0
for(i in 0:6){
r = r + i + rand5() + rand5()*2 + rand5()*3 + rand5()*4 + rand5()*5 + rand5()*6
}
return r %% 7 + 1
}
rand5的分布将被保留。如果我们计算一下,循环的7次迭代中的每一次都有5^6个可能的组合,因此可能组合的总数为(7 * 5^6)%% 7 = 0。因此,我们可以将生成的随机数分成7个相等的组。有关这方面的更多讨论,请参见方法二。
以下是所有可能的组合:
table(apply(expand.grid(c(outer(1:5,0:6,"+")),(1:5)*2,(1:5)*3,(1:5)*4,(1:5)*5,(1:5)*6),1,sum) %% 7 + 1)
1 2 3 4 5 6 7
15625 15625 15625 15625 15625 15625 15625
我认为这很容易证明亚当的方法运行得快得多。在Adam的解中有42次或更多的rand5调用的概率非常小((4/25)^21 ~ 10^(-17))。
方法2 -不精确
现在是第二个方法,它几乎是统一的,但需要6次调用rand5:
rand7 <- function() (sum(sapply(1:6,function(i) i*rand5())) %% 7) + 1
以下是一个简化版本:
rand7 = function(){
r = 0
for(i in 1:6){
r = r + i*rand5()
}
return r %% 7 + 1
}
这实际上是方法1的一次迭代。如果我们生成所有可能的组合,结果计数如下:
table(apply(expand.grid(1:5,(1:5)*2,(1:5)*3,(1:5)*4,(1:5)*5,(1:5)*6),1,sum) %% 7 + 1)
1 2 3 4 5 6 7
2233 2232 2232 2232 2232 2232 2232
一个数字将在5^6 = 15625次试验中再次出现。
现在,在方法1中,通过将1加到6,我们将数字2233移动到每个连续的点上。因此,组合的总数将匹配。这是可行的,因为5^ 6% % 7 = 1,然后我们做了7个适当的变化,所以(7 * 5^ 6% % 7 = 0)。
方法三:精确
如果理解了方法1和2的参数,接下来就是方法3,它只需要7次调用rand5。在这一点上,我觉得这是精确解决方案所需的最少调用数。
下面是一个R的实现:
rand5 <- function() sample(1:5,1)
rand7 <- function() (sum(sapply(1:7, function(i) i * rand5())) %% 7) + 1
对于不熟悉R的人,这里是一个简化版本:
rand7 = function(){
r = 0
for(i in 1:7){
r = r + i * rand5()
}
return r %% 7 + 1
}
rand5的分布将被保留。如果我们计算一下,循环的7次迭代中的每一次都有5个可能的结果,因此可能组合的总数为(7 * 5)%% 7 = 0。因此,我们可以将生成的随机数分成7个相等的组。有关这方面的更多讨论,请参见方法一和方法二。
以下是所有可能的组合:
table(apply(expand.grid(0:6,(1:5)),1,sum) %% 7 + 1)
1 2 3 4 5 6 7
5 5 5 5 5 5 5
我认为这很直接地证明了亚当的方法仍然运行得更快。在Adam的解中有7次或更多的rand5调用的概率仍然很小((4/25)^3 ~ 0.004)。
方法4 -不精确
这是第二种方法的一个小变化。它几乎是统一的,但需要7次调用rand5,这是一个额外的方法2:
rand7 <- function() (rand5() + sum(sapply(1:6,function(i) i*rand5())) %% 7) + 1
以下是一个简化版本:
rand7 = function(){
r = 0
for(i in 1:6){
r = r + i*rand5()
}
return (r+rand5()) %% 7 + 1
}
如果我们生成所有可能的组合,结果计数如下:
table(apply(expand.grid(1:5,(1:5)*2,(1:5)*3,(1:5)*4,(1:5)*5,(1:5)*6,1:5),1,sum) %% 7 + 1)
1 2 3 4 5 6 7
11160 11161 11161 11161 11161 11161 11160
在5^7 = 78125次试验中,有两个数字会少出现一次。在大多数情况下,我可以接受。
这个表达式足以得到1 - 7之间的随机整数
int j = ( rand5()*2 + 4 ) % 7 + 1;
因为1/7是一个以5为底的无限小数,所以没有(完全正确的)解可以在常数时间内运行。一个简单的解决方案是使用拒绝抽样,例如:
int i;
do
{
i = 5 * (rand5() - 1) + rand5(); // i is now uniformly random between 1 and 25
} while(i > 21);
// i is now uniformly random between 1 and 21
return i % 7 + 1; // result is now uniformly random between 1 and 7
这个循环的预期运行时间为25/21 = 1.19次迭代,但是永远循环的概率非常小。