给定一个函数,它产生的是1到5之间的随机整数,写一个函数,它产生的是1到7之间的随机整数。
当前回答
因为1/7是一个以5为底的无限小数,所以没有(完全正确的)解可以在常数时间内运行。一个简单的解决方案是使用拒绝抽样,例如:
int i;
do
{
i = 5 * (rand5() - 1) + rand5(); // i is now uniformly random between 1 and 25
} while(i > 21);
// i is now uniformly random between 1 and 21
return i % 7 + 1; // result is now uniformly random between 1 and 7
这个循环的预期运行时间为25/21 = 1.19次迭代,但是永远循环的概率非常小。
其他回答
rand25() =5*(rand5()-1) + rand5()
rand7() {
while(true) {
int r = rand25();
if (r < 21) return r%3;
}
}
为什么这样做:循环永远运行的概率是0。
这个表达式足以得到1 - 7之间的随机整数
int j = ( rand5()*2 + 4 ) % 7 + 1;
通过使用滚动总数,您可以同时
保持平均分配;而且 不需要牺牲随机序列中的任何元素。
这两个问题都是简单的rand(5)+rand(5)…类型的解决方案。下面的Python代码展示了如何实现它(其中大部分是证明发行版)。
import random
x = []
for i in range (0,7):
x.append (0)
t = 0
tt = 0
for i in range (0,700000):
########################################
##### qq.py #####
r = int (random.random () * 5)
t = (t + r) % 7
########################################
##### qq_notsogood.py #####
#r = 20
#while r > 6:
#r = int (random.random () * 5)
#r = r + int (random.random () * 5)
#t = r
########################################
x[t] = x[t] + 1
tt = tt + 1
high = x[0]
low = x[0]
for i in range (0,7):
print "%d: %7d %.5f" % (i, x[i], 100.0 * x[i] / tt)
if x[i] < low:
low = x[i]
if x[i] > high:
high = x[i]
diff = high - low
print "Variation = %d (%.5f%%)" % (diff, 100.0 * diff / tt)
这个输出显示了结果:
pax$ python qq.py
0: 99908 14.27257
1: 100029 14.28986
2: 100327 14.33243
3: 100395 14.34214
4: 99104 14.15771
5: 99829 14.26129
6: 100408 14.34400
Variation = 1304 (0.18629%)
pax$ python qq.py
0: 99547 14.22100
1: 100229 14.31843
2: 100078 14.29686
3: 99451 14.20729
4: 100284 14.32629
5: 100038 14.29114
6: 100373 14.33900
Variation = 922 (0.13171%)
pax$ python qq.py
0: 100481 14.35443
1: 99188 14.16971
2: 100284 14.32629
3: 100222 14.31743
4: 99960 14.28000
5: 99426 14.20371
6: 100439 14.34843
Variation = 1293 (0.18471%)
一个简单的rand(5)+rand(5),忽略那些返回大于6的情况,其典型变化为18%,是上面所示方法的100倍:
pax$ python qq_notsogood.py
0: 31756 4.53657
1: 63304 9.04343
2: 95507 13.64386
3: 127825 18.26071
4: 158851 22.69300
5: 127567 18.22386
6: 95190 13.59857
Variation = 127095 (18.15643%)
pax$ python qq_notsogood.py
0: 31792 4.54171
1: 63637 9.09100
2: 95641 13.66300
3: 127627 18.23243
4: 158751 22.67871
5: 126782 18.11171
6: 95770 13.68143
Variation = 126959 (18.13700%)
pax$ python qq_notsogood.py
0: 31955 4.56500
1: 63485 9.06929
2: 94849 13.54986
3: 127737 18.24814
4: 159687 22.81243
5: 127391 18.19871
6: 94896 13.55657
Variation = 127732 (18.24743%)
并且,根据Nixuz的建议,我已经清理了脚本,所以您可以提取并使用rand7…材料:
import random
# rand5() returns 0 through 4 inclusive.
def rand5():
return int (random.random () * 5)
# rand7() generator returns 0 through 6 inclusive (using rand5()).
def rand7():
rand7ret = 0
while True:
rand7ret = (rand7ret + rand5()) % 7
yield rand7ret
# Number of test runs.
count = 700000
# Work out distribution.
distrib = [0,0,0,0,0,0,0]
rgen =rand7()
for i in range (0,count):
r = rgen.next()
distrib[r] = distrib[r] + 1
# Print distributions and calculate variation.
high = distrib[0]
low = distrib[0]
for i in range (0,7):
print "%d: %7d %.5f" % (i, distrib[i], 100.0 * distrib[i] / count)
if distrib[i] < low:
low = distrib[i]
if distrib[i] > high:
high = distrib[i]
diff = high - low
print "Variation = %d (%.5f%%)" % (diff, 100.0 * diff / count)
简单高效:
int rand7 ( void )
{
return 4; // this number has been calculated using
// rand5() and is in the range 1..7
}
(灵感来自你最喜欢的“程序员”卡通?)
Python:有一个简单的两行答案,它使用空间代数和模量的组合。这不是直观的。我对它的解释令人困惑,但却是正确的。
知道5*7=35 7/5 = 1余数为2。如何保证余数之和始终为0?5*[7/5 = 1余数2]——> 35/5 = 7余数0
想象一下,我们有一条丝带,缠在一根周长为7的杆子上。丝带需要35个单位才能均匀地缠绕。随机选择7个色带片段len=[1…5]。忽略换行的有效长度与将rand5()转换为rand7()的方法相同。
import numpy as np
import pandas as pd
# display is a notebook function FYI
def rand5(): ## random uniform int [1...5]
return np.random.randint(1,6)
n_trials = 1000
samples = [rand5() for _ in range(n_trials)]
display(pd.Series(samples).value_counts(normalize=True))
# 4 0.2042
# 5 0.2041
# 2 0.2010
# 1 0.1981
# 3 0.1926
# dtype: float64
def rand7(): # magic algebra
x = sum(rand5() for _ in range(7))
return x%7 + 1
samples = [rand7() for _ in range(n_trials)]
display(pd.Series(samples).value_counts(normalize=False))
# 6 1475
# 2 1475
# 3 1456
# 1 1423
# 7 1419
# 4 1393
# 5 1359
# dtype: int64
df = pd.DataFrame([
pd.Series([rand7() for _ in range(n_trials)]).value_counts(normalize=True)
for _ in range(1000)
])
df.describe()
# 1 2 3 4 5 6 7
# count 1000.000000 1000.000000 1000.000000 1000.000000 1000.000000 1000.000000 1000.000000
# mean 0.142885 0.142928 0.142523 0.142266 0.142704 0.143048 0.143646
# std 0.010807 0.011526 0.010966 0.011223 0.011052 0.010983 0.011153
# min 0.112000 0.108000 0.101000 0.110000 0.100000 0.109000 0.110000
# 25% 0.135000 0.135000 0.135000 0.135000 0.135000 0.135000 0.136000
# 50% 0.143000 0.142000 0.143000 0.142000 0.143000 0.142000 0.143000
# 75% 0.151000 0.151000 0.150000 0.150000 0.150000 0.150000 0.151000
# max 0.174000 0.181000 0.175000 0.178000 0.189000 0.176000 0.179000
推荐文章
- 如何计算圆周长上的一点?
- 从整数流中找到运行中位数
- 在日历应用程序中建模重复事件的最佳方法是什么?
- 在任何情况下,您更喜欢高大o时间复杂度算法而不是低大o时间复杂度算法吗?
- 如何在c++中生成一个随机数?
- 如何使用JavaScript比较软件版本号?数量(只)
- 跳跃表vs.二叉搜索树
- 如何使四舍五入百分比加起来为100%
- 是否有可能得到一个函数的所有参数作为单一对象内的函数?
- 随机行选择在熊猫数据框架
- LL和LR解析之间的区别是什么?
- log(n!) = Θ(n·log(n))?
- C语言中位反转的高效算法(从MSB->LSB到LSB->MSB)
- 递归还是迭代?
- 从文件中读取随机行有什么简单的方法?