给定一个函数,它产生的是1到5之间的随机整数,写一个函数,它产生的是1到7之间的随机整数。
当前回答
因为1/7是一个以5为底的无限小数,所以没有(完全正确的)解可以在常数时间内运行。一个简单的解决方案是使用拒绝抽样,例如:
int i;
do
{
i = 5 * (rand5() - 1) + rand5(); // i is now uniformly random between 1 and 25
} while(i > 21);
// i is now uniformly random between 1 and 21
return i % 7 + 1; // result is now uniformly random between 1 and 7
这个循环的预期运行时间为25/21 = 1.19次迭代,但是永远循环的概率非常小。
其他回答
面对这么复杂的答案,我觉得自己很蠢。
为什么不能:
int random1_to_7()
{
return (random1_to_5() * 7) / 5;
}
?
这里有很多解决方案没有产生均匀分布,许多评论指出了这一点,但这个问题并没有把它作为一个要求。最简单的解决方案是:
int rand_7() { return rand_5(); }
1 - 5范围内的随机整数显然在1 - 7范围内。从技术上讲,最简单的解决方法是返回一个常数,但那太琐碎了。
然而,我认为rand_5函数的存在是一个转移注意力的问题。假设问题是“生成一个均匀分布的伪随机数生成器,输出范围为1 - 7”。这是一个简单的问题(技术上不简单,但已经解决了,所以您可以查阅它)。
另一方面,如果问题被解释为你实际上有一个真正的随机数生成器,用于范围为1 - 5的整数(而不是伪随机),那么解决方案是:
1) examine the rand_5 function
2) understand how it works
3) profit
function rand7() {
while (true) { //lowest base 5 random number > 7 reduces memory
int num = (rand5()-1)*5 + rand5()-1;
if (num < 21) // improves performance
return 1 + num%7;
}
}
Python代码:
from random import randint
def rand7():
while(True):
num = (randint(1, 5)-1)*5 + randint(1, 5)-1
if num < 21:
return 1 + num%7
100000次运行的测试分布:
>>> rnums = []
>>> for _ in range(100000):
rnums.append(rand7())
>>> {n:rnums.count(n) for n in set(rnums)}
{1: 15648, 2: 15741, 3: 15681, 4: 15847, 5: 15642, 6: 15806, 7: 15635}
PHP解决方案
<?php
function random_5(){
return rand(1,5);
}
function random_7(){
$total = 0;
for($i=0;$i<7;$i++){
$total += random_5();
}
return ($total%7)+1;
}
echo random_7();
?>
这里允许作业题吗?
这个函数进行粗略的“以5为基数”的数学运算,生成0到6之间的数字。
function rnd7() {
do {
r1 = rnd5() - 1;
do {
r2=rnd5() - 1;
} while (r2 > 1);
result = r2 * 5 + r1;
} while (result > 6);
return result + 1;
}