给定一个函数,它产生的是1到5之间的随机整数,写一个函数,它产生的是1到7之间的随机整数。
当前回答
如果有人能就这一点给我反馈,那就太酷了,我使用了没有assert模式的JUNIT,因为在Eclipse中运行它很容易,也很快速,我也可以只定义一个主方法。顺便说一下,我假设rand5给出的值为0-4,加上1将得到1-5,rand7也是如此……所以讨论应该是解决方案,它的分布,而不是它是从0-4还是1-5…
package random;
import java.util.Random;
import org.junit.Test;
public class RandomTest {
@Test
public void testName() throws Exception {
long times = 100000000;
int indexes[] = new int[7];
for(int i = 0; i < times; i++) {
int rand7 = rand7();
indexes[rand7]++;
}
for(int i = 0; i < 7; i++)
System.out.println("Value " + i + ": " + indexes[i]);
}
public int rand7() {
return (rand5() + rand5() + rand5() + rand5() + rand5() + rand5() + rand5()) % 7;
}
public int rand5() {
return new Random().nextInt(5);
}
}
当我运行它时,我得到这样的结果:
Value 0: 14308087
Value 1: 14298303
Value 2: 14279731
Value 3: 14262533
Value 4: 14269749
Value 5: 14277560
Value 6: 14304037
这似乎是一个非常公平的分配,不是吗?
如果我将rand5()添加更少或更多次(其中次数不能被7整除),分布会清楚地显示偏移量。例如,将rand5()相加3次:
Value 0: 15199685
Value 1: 14402429
Value 2: 12795649
Value 3: 12796957
Value 4: 14402252
Value 5: 15202778
Value 6: 15200250
因此,这将导致以下结果:
public int rand(int range) {
int randomValue = 0;
for(int i = 0; i < range; i++) {
randomValue += rand5();
}
return randomValue % range;
}
然后,我可以更进一步:
public static final int ORIGN_RANGE = 5;
public static final int DEST_RANGE = 7;
@Test
public void testName() throws Exception {
long times = 100000000;
int indexes[] = new int[DEST_RANGE];
for(int i = 0; i < times; i++) {
int rand7 = convertRand(DEST_RANGE, ORIGN_RANGE);
indexes[rand7]++;
}
for(int i = 0; i < DEST_RANGE; i++)
System.out.println("Value " + i + ": " + indexes[i]);
}
public int convertRand(int destRange, int originRange) {
int randomValue = 0;
for(int i = 0; i < destRange; i++) {
randomValue += rand(originRange);
}
return randomValue % destRange;
}
public int rand(int range) {
return new Random().nextInt(range);
}
我尝试用不同的值替换destRange和originRange(甚至ORIGIN为7,DEST为13),我得到了这样的分布:
Value 0: 7713763
Value 1: 7706552
Value 2: 7694697
Value 3: 7695319
Value 4: 7688617
Value 5: 7681691
Value 6: 7674798
Value 7: 7680348
Value 8: 7685286
Value 9: 7683943
Value 10: 7690283
Value 11: 7699142
Value 12: 7705561
从这里我可以得出的结论是,你可以通过求和起始随机“目的地”时间来将任意随机改变为任意随机。这将得到一种高斯分布(中间值更有可能,边缘值更不常见)。然而,目标模量似乎均匀地分布在这个高斯分布中…如果能得到数学家的反馈就太好了……
最酷的是,成本是100%可预测的和恒定的,而其他解决方案导致无限循环的概率很小……
其他回答
function rand7() {
while (true) { //lowest base 5 random number > 7 reduces memory
int num = (rand5()-1)*5 + rand5()-1;
if (num < 21) // improves performance
return 1 + num%7;
}
}
Python代码:
from random import randint
def rand7():
while(True):
num = (randint(1, 5)-1)*5 + randint(1, 5)-1
if num < 21:
return 1 + num%7
100000次运行的测试分布:
>>> rnums = []
>>> for _ in range(100000):
rnums.append(rand7())
>>> {n:rnums.count(n) for n in set(rnums)}
{1: 15648, 2: 15741, 3: 15681, 4: 15847, 5: 15642, 6: 15806, 7: 15635}
这个解决方案不浪费任何熵,并给出了范围内第一个可用的真正随机数。随着每一次迭代,得不到答案的概率可证明地降低了。在N次迭代中得到答案的概率是0到max (5^N)之间的随机数小于该范围内7的最大倍数(max-max%7)的概率。必须迭代至少两次。但这对所有解都是成立的。
int random7() {
range = 1;
remainder = 0;
while (1) {
remainder = remainder * 5 + random5() - 1;
range = range * 5;
limit = range - (range % 7);
if (remainder < limit) return (remainder % 7) + 1;
remainder = remainder % 7;
range = range % 7;
}
}
数值上等价于:
r5=5;
num=random5()-1;
while (1) {
num=num*5+random5()-1;
r5=r5*5;
r7=r5-r5%7;
if (num<r7) return num%7+1;
}
第一个代码以模形式计算。第二个代码只是简单的数学。或者我在某个地方犯了错误。: -)
假设rand给予所有位相同的权重,然后用上界进行掩码。
int i = rand(5) ^ (rand(5) & 2);
Rand(5)只能返回:1b, 10b, 11b, 100b, 101b。有时候你只需要考虑设置2位。
我想我有四个答案,两个给出了像@Adam Rosenfield那样的精确解决方案,但没有无限循环问题,另外两个几乎完美的解决方案,但执行速度比第一个更快。
最好的精确解决方案需要7次调用rand5,但为了理解,让我们继续。
方法一:精确
Adam的答案的优点在于它给出了一个完美的均匀分布,并且只需要两次调用rand5()的概率非常高(21/25)。然而,最坏的情况是无限循环。
下面的第一个解决方案也给出了一个完美的均匀分布,但总共需要对rand5进行42次调用。没有无限循环。
下面是一个R的实现:
rand5 <- function() sample(1:5,1)
rand7 <- function() (sum(sapply(0:6, function(i) i + rand5() + rand5()*2 + rand5()*3 + rand5()*4 + rand5()*5 + rand5()*6)) %% 7) + 1
对于不熟悉R的人,这里是一个简化版本:
rand7 = function(){
r = 0
for(i in 0:6){
r = r + i + rand5() + rand5()*2 + rand5()*3 + rand5()*4 + rand5()*5 + rand5()*6
}
return r %% 7 + 1
}
rand5的分布将被保留。如果我们计算一下,循环的7次迭代中的每一次都有5^6个可能的组合,因此可能组合的总数为(7 * 5^6)%% 7 = 0。因此,我们可以将生成的随机数分成7个相等的组。有关这方面的更多讨论,请参见方法二。
以下是所有可能的组合:
table(apply(expand.grid(c(outer(1:5,0:6,"+")),(1:5)*2,(1:5)*3,(1:5)*4,(1:5)*5,(1:5)*6),1,sum) %% 7 + 1)
1 2 3 4 5 6 7
15625 15625 15625 15625 15625 15625 15625
我认为这很容易证明亚当的方法运行得快得多。在Adam的解中有42次或更多的rand5调用的概率非常小((4/25)^21 ~ 10^(-17))。
方法2 -不精确
现在是第二个方法,它几乎是统一的,但需要6次调用rand5:
rand7 <- function() (sum(sapply(1:6,function(i) i*rand5())) %% 7) + 1
以下是一个简化版本:
rand7 = function(){
r = 0
for(i in 1:6){
r = r + i*rand5()
}
return r %% 7 + 1
}
这实际上是方法1的一次迭代。如果我们生成所有可能的组合,结果计数如下:
table(apply(expand.grid(1:5,(1:5)*2,(1:5)*3,(1:5)*4,(1:5)*5,(1:5)*6),1,sum) %% 7 + 1)
1 2 3 4 5 6 7
2233 2232 2232 2232 2232 2232 2232
一个数字将在5^6 = 15625次试验中再次出现。
现在,在方法1中,通过将1加到6,我们将数字2233移动到每个连续的点上。因此,组合的总数将匹配。这是可行的,因为5^ 6% % 7 = 1,然后我们做了7个适当的变化,所以(7 * 5^ 6% % 7 = 0)。
方法三:精确
如果理解了方法1和2的参数,接下来就是方法3,它只需要7次调用rand5。在这一点上,我觉得这是精确解决方案所需的最少调用数。
下面是一个R的实现:
rand5 <- function() sample(1:5,1)
rand7 <- function() (sum(sapply(1:7, function(i) i * rand5())) %% 7) + 1
对于不熟悉R的人,这里是一个简化版本:
rand7 = function(){
r = 0
for(i in 1:7){
r = r + i * rand5()
}
return r %% 7 + 1
}
rand5的分布将被保留。如果我们计算一下,循环的7次迭代中的每一次都有5个可能的结果,因此可能组合的总数为(7 * 5)%% 7 = 0。因此,我们可以将生成的随机数分成7个相等的组。有关这方面的更多讨论,请参见方法一和方法二。
以下是所有可能的组合:
table(apply(expand.grid(0:6,(1:5)),1,sum) %% 7 + 1)
1 2 3 4 5 6 7
5 5 5 5 5 5 5
我认为这很直接地证明了亚当的方法仍然运行得更快。在Adam的解中有7次或更多的rand5调用的概率仍然很小((4/25)^3 ~ 0.004)。
方法4 -不精确
这是第二种方法的一个小变化。它几乎是统一的,但需要7次调用rand5,这是一个额外的方法2:
rand7 <- function() (rand5() + sum(sapply(1:6,function(i) i*rand5())) %% 7) + 1
以下是一个简化版本:
rand7 = function(){
r = 0
for(i in 1:6){
r = r + i*rand5()
}
return (r+rand5()) %% 7 + 1
}
如果我们生成所有可能的组合,结果计数如下:
table(apply(expand.grid(1:5,(1:5)*2,(1:5)*3,(1:5)*4,(1:5)*5,(1:5)*6,1:5),1,sum) %% 7 + 1)
1 2 3 4 5 6 7
11160 11161 11161 11161 11161 11161 11160
在5^7 = 78125次试验中,有两个数字会少出现一次。在大多数情况下,我可以接受。
与Martin的答案相似,但却很少抛弃熵:
int rand7(void) {
static int m = 1;
static int r = 0;
for (;;) {
while (m <= INT_MAX / 5) {
r = r + m * (rand5() - 1);
m = m * 5;
}
int q = m / 7;
if (r < q * 7) {
int i = r % 7;
r = r / 7;
m = q;
return i + 1;
}
r = r - q * 7;
m = m - q * 7;
}
}
在这里,我们在0到m-1之间建立一个随机值,并尝试通过添加尽可能多的状态来最大化m,而不会溢出(INT_MAX是C中适合int的最大值,或者您可以将其替换为任何在您的语言和体系结构中有意义的大值)。
然后;如果r落在能被7整除的最大可能区间内,那么它包含一个可行的结果,我们可以将这个区间除以7,取余数作为我们的结果,并将剩余的值返回到熵池。否则r在另一个不均匀的区间内我们就必须抛弃这个不拟合区间重新启动熵池。
与这里的流行答案相比,它调用rand5()的频率平均减少了一半。
为了提高性能,可以将除法分解为琐碎的比特旋转和lut。