给定一个函数,它产生的是1到5之间的随机整数,写一个函数,它产生的是1到7之间的随机整数。
当前回答
Here's a solution that fits entirely within integers and is within about 4% of optimal (i.e. uses 1.26 random numbers in {0..4} for every one in {0..6}). The code's in Scala, but the math should be reasonably clear in any language: you take advantage of the fact that 7^9 + 7^8 is very close to 5^11. So you pick an 11 digit number in base 5, and then interpret it as a 9 digit number in base 7 if it's in range (giving 9 base 7 numbers), or as an 8 digit number if it's over the 9 digit number, etc.:
abstract class RNG {
def apply(): Int
}
class Random5 extends RNG {
val rng = new scala.util.Random
var count = 0
def apply() = { count += 1 ; rng.nextInt(5) }
}
class FiveSevener(five: RNG) {
val sevens = new Array[Int](9)
var nsevens = 0
val to9 = 40353607;
val to8 = 5764801;
val to7 = 823543;
def loadSevens(value: Int, count: Int) {
nsevens = 0;
var remaining = value;
while (nsevens < count) {
sevens(nsevens) = remaining % 7
remaining /= 7
nsevens += 1
}
}
def loadSevens {
var fivepow11 = 0;
var i=0
while (i<11) { i+=1 ; fivepow11 = five() + fivepow11*5 }
if (fivepow11 < to9) { loadSevens(fivepow11 , 9) ; return }
fivepow11 -= to9
if (fivepow11 < to8) { loadSevens(fivepow11 , 8) ; return }
fivepow11 -= to8
if (fivepow11 < 3*to7) loadSevens(fivepow11 % to7 , 7)
else loadSevens
}
def apply() = {
if (nsevens==0) loadSevens
nsevens -= 1
sevens(nsevens)
}
}
如果你将一个测试粘贴到解释器中(实际上是REPL),你会得到:
scala> val five = new Random5
five: Random5 = Random5@e9c592
scala> val seven = new FiveSevener(five)
seven: FiveSevener = FiveSevener@143c423
scala> val counts = new Array[Int](7)
counts: Array[Int] = Array(0, 0, 0, 0, 0, 0, 0)
scala> var i=0 ; while (i < 100000000) { counts( seven() ) += 1 ; i += 1 }
i: Int = 100000000
scala> counts
res0: Array[Int] = Array(14280662, 14293012, 14281286, 14284836, 14287188,
14289332, 14283684)
scala> five.count
res1: Int = 125902876
分布很好,很平坦(在每个箱子中,10^8的1/7大约在10k范围内,就像预期的近似高斯分布一样)。
其他回答
什么是简单的解决方案?(rand5() + rand5()) % 7 + 1 减少内存使用或在较慢的CPU上运行的有效解决方案是什么?是的,这是有效的,因为它只调用rand5()两次,空间复杂度为O(1)
考虑rand5()给出从1到5(包括)的随机数。 (1 + 1) % 7 + 1 = 3 (1 + 2) % 7 + 1 = 4 (1 + 3) % 7 + 1 = 5 (1 + 4) % 7 + 1 = 6 (1 + 5) % 7 + 1 = 7
(2 + 1) % 7 + 1 = 4 (2 + 2) % 7 + 1 = 5 (2 + 3) % 7 + 1 = 6 (2 + 4) % 7 + 1 = 7 (2 + 5) % 7 + 1 = 1 .
(5 + 1) % 7 + 1 = 7 (5 + 2) % 7 + 1 = 1 (5 + 3) % 7 + 1 = 2 (5 + 4) % 7 + 1 = 3 (5 + 5) % 7 + 1 = 4 .
等等
(我剽窃了亚当·罗森菲尔德的答案,使其运行速度提高了7%左右。)
假设rand5()返回分布相等的{0,1,2,3,4}中的一个,目标是返回分布相等的{0,1,2,3,4,5,6}。
int rand7() {
i = 5 * rand5() + rand5();
max = 25;
//i is uniform among {0 ... max-1}
while(i < max%7) {
//i is uniform among {0 ... (max%7 - 1)}
i *= 5;
i += rand5(); //i is uniform {0 ... (((max%7)*5) - 1)}
max %= 7;
max *= 5; //once again, i is uniform among {0 ... max-1}
}
return(i%7);
}
我们在跟踪这个循环在变量max中所能产生的最大值。如果到目前为止的结果在max%7和max-1之间,那么结果将均匀分布在该范围内。如果不是,则使用余数,余数是0到max%7-1之间的随机数,然后再次调用rand()来生成一个新的数字和一个新的max。然后我们重新开始。
编辑:在这个方程中,期望调用rand5()的次数是x:
x = 2 * 21/25
+ 3 * 4/25 * 14/20
+ 4 * 4/25 * 6/20 * 28/30
+ 5 * 4/25 * 6/20 * 2/30 * 7/10
+ 6 * 4/25 * 6/20 * 2/30 * 3/10 * 14/15
+ (6+x) * 4/25 * 6/20 * 2/30 * 3/10 * 1/15
x = about 2.21 calls to rand5()
这里允许作业题吗?
这个函数进行粗略的“以5为基数”的数学运算,生成0到6之间的数字。
function rnd7() {
do {
r1 = rnd5() - 1;
do {
r2=rnd5() - 1;
} while (r2 > 1);
result = r2 * 5 + r1;
} while (result > 6);
return result + 1;
}
面对这么复杂的答案,我觉得自己很蠢。
为什么不能:
int random1_to_7()
{
return (random1_to_5() * 7) / 5;
}
?
因为1/7是一个以5为底的无限小数,所以没有(完全正确的)解可以在常数时间内运行。一个简单的解决方案是使用拒绝抽样,例如:
int i;
do
{
i = 5 * (rand5() - 1) + rand5(); // i is now uniformly random between 1 and 25
} while(i > 21);
// i is now uniformly random between 1 and 21
return i % 7 + 1; // result is now uniformly random between 1 and 7
这个循环的预期运行时间为25/21 = 1.19次迭代,但是永远循环的概率非常小。