给定一个函数,它产生的是1到5之间的随机整数,写一个函数,它产生的是1到7之间的随机整数。
当前回答
这是我在看过别人的答案后得出的最简单的答案:
def r5tor7():
while True:
cand = (5 * r5()) + r5()
if cand < 27:
return cand
Cand在[6,27]范围内,如果r5()的可能结果是均匀分布的,则可能结果是均匀分布的。你可以用下面的代码来测试我的答案:
from collections import defaultdict
def r5_outcome(n):
if not n:
yield []
else:
for i in range(1, 6):
for j in r5_outcome(n-1):
yield [i] + j
def test_r7():
d = defaultdict(int)
for x in r5_outcome(2):
s = sum([x[i] * 5**i for i in range(len(x))])
if s < 27:
d[s] += 1
print len(d), d
R5_outcome(2)生成r5()结果的所有可能组合。我使用与解决方案代码中相同的筛选器进行测试。你可以看到所有的结果都是相等的,因为它们有相同的值。
其他回答
这里允许作业题吗?
这个函数进行粗略的“以5为基数”的数学运算,生成0到6之间的数字。
function rnd7() {
do {
r1 = rnd5() - 1;
do {
r2=rnd5() - 1;
} while (r2 > 1);
result = r2 * 5 + r1;
} while (result > 6);
return result + 1;
}
就是这样,均匀分布,零rand5调用。
def rand7:
seed += 1
if seed >= 7:
seed = 0
yield seed
需要事先播种。
以下是我的回答:
static struct rand_buffer {
unsigned v, count;
} buf2, buf3;
void push (struct rand_buffer *buf, unsigned n, unsigned v)
{
buf->v = buf->v * n + v;
++buf->count;
}
#define PUSH(n, v) push (&buf##n, n, v)
int rand16 (void)
{
int v = buf2.v & 0xf;
buf2.v >>= 4;
buf2.count -= 4;
return v;
}
int rand9 (void)
{
int v = buf3.v % 9;
buf3.v /= 9;
buf3.count -= 2;
return v;
}
int rand7 (void)
{
if (buf3.count >= 2) {
int v = rand9 ();
if (v < 7)
return v % 7 + 1;
PUSH (2, v - 7);
}
for (;;) {
if (buf2.count >= 4) {
int v = rand16 ();
if (v < 14) {
PUSH (2, v / 7);
return v % 7 + 1;
}
PUSH (2, v - 14);
}
// Get a number between 0 & 25
int v = 5 * (rand5 () - 1) + rand5 () - 1;
if (v < 21) {
PUSH (3, v / 7);
return v % 7 + 1;
}
v -= 21;
PUSH (2, v & 1);
PUSH (2, v >> 1);
}
}
它比其他的稍微复杂一点,但我相信它最小化了对rand5的调用。与其他解决方案一样,它有小概率会循环很长时间。
下面是一个利用c++ 11特性的答案
#include <functional>
#include <iostream>
#include <ostream>
#include <random>
int main()
{
std::random_device rd;
unsigned long seed = rd();
std::cout << "seed = " << seed << std::endl;
std::mt19937 engine(seed);
std::uniform_int_distribution<> dist(1, 5);
auto rand5 = std::bind(dist, engine);
const int n = 20;
for (int i = 0; i != n; ++i)
{
std::cout << rand5() << " ";
}
std::cout << std::endl;
// Use a lambda expression to define rand7
auto rand7 = [&rand5]()->int
{
for (int result = 0; ; result = 0)
{
// Take advantage of the fact that
// 5**6 = 15625 = 15624 + 1 = 7 * (2232) + 1.
// So we only have to discard one out of every 15625 numbers generated.
// Generate a 6-digit number in base 5
for (int i = 0; i != 6; ++i)
{
result = 5 * result + (rand5() - 1);
}
// result is in the range [0, 15625)
if (result == 15625 - 1)
{
// Discard this number
continue;
}
// We now know that result is in the range [0, 15624), a range that can
// be divided evenly into 7 buckets guaranteeing uniformity
result /= 2232;
return 1 + result;
}
};
for (int i = 0; i != n; ++i)
{
std::cout << rand7() << " ";
}
std::cout << std::endl;
return 0;
}
我首先想到的是这个。但我不知道它是否均匀分布。 在python中实现
进口随机 def rand5 (): 返回random.randint(1、5) def rand7 (): 返回((rand5() -1) * rand5()) %7)+1