给定一个函数,它产生的是1到5之间的随机整数,写一个函数,它产生的是1到7之间的随机整数。
当前回答
这是我在看过别人的答案后得出的最简单的答案:
def r5tor7():
while True:
cand = (5 * r5()) + r5()
if cand < 27:
return cand
Cand在[6,27]范围内,如果r5()的可能结果是均匀分布的,则可能结果是均匀分布的。你可以用下面的代码来测试我的答案:
from collections import defaultdict
def r5_outcome(n):
if not n:
yield []
else:
for i in range(1, 6):
for j in r5_outcome(n-1):
yield [i] + j
def test_r7():
d = defaultdict(int)
for x in r5_outcome(2):
s = sum([x[i] * 5**i for i in range(len(x))])
if s < 27:
d[s] += 1
print len(d), d
R5_outcome(2)生成r5()结果的所有可能组合。我使用与解决方案代码中相同的筛选器进行测试。你可以看到所有的结果都是相等的,因为它们有相同的值。
其他回答
这个问题的主要概念是关于正态分布的,这里提供了一个简单的递归解决这个问题的方法
假设我们已经在我们的作用域中有rand5():
def rand7():
# twoway = 0 or 1 in the same probability
twoway = None
while not twoway in (1, 2):
twoway = rand5()
twoway -= 1
ans = rand5() + twoway * 5
return ans if ans in range(1,8) else rand7()
解释
我们可以把这个程序分成两个部分:
循环rand5()直到我们找到1或2,这意味着我们有1/2的概率在变量中有1或2 复合ans by rand5() + twoway * 5,这正是rand10()的结果,如果这不符合我们的需要(1~7),然后我们再次运行rand7。
附注:我们不能在第二部分直接运行while循环,因为双向的每个概率都需要是单独的。
但是有一个权衡,因为第一部分中的while循环和return语句中的递归,这个函数不能保证执行时间,它实际上是无效的。
结果
我做了一个简单的测试来观察我的答案的分布。
result = [ rand7() for x in xrange(777777) ]
ans = {
1: 0,
2: 0,
3: 0,
4: 0,
5: 0,
6: 0,
7: 0,
}
for i in result:
ans[i] += 1
print ans
它给了
{1: 111170, 2: 110693, 3: 110651, 4: 111260, 5: 111197, 6: 111502, 7: 111304}
因此,我们可以知道这个答案是正态分布。
简单的答案
如果你不关心这个函数的执行时间,下面是一个基于我上面给出的答案的简化答案:
def rand7():
ans = rand5() + (rand5()-1) * 5
return ans if ans < 8 else rand7()
这增加了大于8的值的概率,但这可能是这个问题的最短答案。
这里允许作业题吗?
这个函数进行粗略的“以5为基数”的数学运算,生成0到6之间的数字。
function rnd7() {
do {
r1 = rnd5() - 1;
do {
r2=rnd5() - 1;
} while (r2 > 1);
result = r2 * 5 + r1;
} while (result > 6);
return result + 1;
}
为什么这行不通?除了对rand5()的额外调用之外?
i = rand5() + rand5() + (rand5() - 1) //Random number between 1 and 14
i = i % 7 + 1;
上面引用了一些优雅的算法,但这里有一种方法可以接近它,尽管它可能是迂回的。我假设的值是从0开始的。
R2 =给出小于2的随机数生成器(样本空间= {0,1}) R8 =给出小于8的随机数生成器(样本空间= {0,1,2,3,4,5,6,7})
为了从R2生成R8,您将运行R2三次,并将所有3次运行的组合结果作为3位二进制数使用。下面是R2运行三次时的值范围:
0, 0, 0 --> 0 . . 1, 1, 1 --> 7
现在要从R8生成R7,我们只需再次运行R7,如果它返回7:
int R7() {
do {
x = R8();
} while (x > 6)
return x;
}
迂回的解决方案是从R5生成R2(就像我们从R8生成R7一样),然后从R2生成R8,然后从R8生成R7。
产生近似均匀分布的常数时间解。诀窍是625恰好能被7整除当你增加到这个范围时,你可以得到均匀的分布。
编辑:我的错,我算错了,但我不会把它拉下来,以防有人觉得它有用/有趣。毕竟它确实有效……:)
int rand5()
{
return (rand() % 5) + 1;
}
int rand25()
{
return (5 * (rand5() - 1) + rand5());
}
int rand625()
{
return (25 * (rand25() - 1) + rand25());
}
int rand7()
{
return ((625 * (rand625() - 1) + rand625()) - 1) % 7 + 1;
}