给定一个函数,它产生的是1到5之间的随机整数,写一个函数,它产生的是1到7之间的随机整数。


当前回答

下面是一个利用c++ 11特性的答案

#include <functional>
#include <iostream>
#include <ostream>
#include <random>

int main()
{
    std::random_device rd;
    unsigned long seed = rd();
    std::cout << "seed = " << seed << std::endl;

    std::mt19937 engine(seed);

    std::uniform_int_distribution<> dist(1, 5);
    auto rand5 = std::bind(dist, engine);

    const int n = 20;
    for (int i = 0; i != n; ++i)
    {
        std::cout << rand5() << " ";
    }
    std::cout << std::endl;

    // Use a lambda expression to define rand7
    auto rand7 = [&rand5]()->int
    {
        for (int result = 0; ; result = 0)
        {
            // Take advantage of the fact that
            // 5**6 = 15625 = 15624 + 1 = 7 * (2232) + 1.
            // So we only have to discard one out of every 15625 numbers generated.

            // Generate a 6-digit number in base 5
            for (int i = 0; i != 6; ++i)
            {
                result = 5 * result + (rand5() - 1);
            }

            // result is in the range [0, 15625)
            if (result == 15625 - 1)
            {
                // Discard this number
                continue;
            }

            // We now know that result is in the range [0, 15624), a range that can
            // be divided evenly into 7 buckets guaranteeing uniformity
            result /= 2232;
            return 1 + result;
        }
    };

    for (int i = 0; i != n; ++i)
    {
        std::cout << rand7() << " ";
    }
    std::cout << std::endl;

    return 0;
}

其他回答

对于范围[1,5]到[1,7],这相当于用一个5面骰子滚动一个7面骰子。

然而,如果不“浪费”随机性(或者在最坏的情况下永远运行),就无法做到这一点,因为7的所有质因数(即7)都不能整除5。因此,最好的方法是使用拒绝抽样来获得任意接近于不“浪费”随机性的结果(例如,将多个5面骰子摇到5^n“足够接近”7的幂)。这个问题的解决方案已经在其他答案中给出了。

更一般地说,用p面骰子掷k面骰子的算法将不可避免地“浪费”随机性(并且在最坏的情况下永远运行),除非“每个质数能除k也能除p”,根据B. Kloeckner的“用骰子模拟骰子”中的引理3。例如,举一个更实际的例子,p是2的幂,k是任意的。在这种情况下,这种“浪费”和无限的运行时间是不可避免的,除非k也是2的幂。

rand7() = (rand5()+rand5()+rand5()+rand5()+rand5()+rand5()+rand5())%7+1

编辑:这并不奏效。误差约为千分之二(假设是完美的rand5)。桶得到:

value   Count  Error%
1       11158  -0.0035
2       11144  -0.0214
3       11144  -0.0214
4       11158  -0.0035
5       11172  +0.0144
6       11177  +0.0208
7       11172  +0.0144

通过转换到的和

n   Error%
10  +/- 1e-3,
12  +/- 1e-4,
14  +/- 1e-5,
16  +/- 1e-6,
...
28  +/- 3e-11

似乎每增加2就增加一个数量级

BTW:上面的误差表不是通过采样产生的,而是通过以下递归关系产生的:

P [x,n]是给定n次调用rand5,输出=x可能发生的次数。

  p[1,1] ... p[5,1] = 1
  p[6,1] ... p[7,1] = 0

  p[1,n] = p[7,n-1] + p[6,n-1] + p[5,n-1] + p[4,n-1] + p[3,n-1]
  p[2,n] = p[1,n-1] + p[7,n-1] + p[6,n-1] + p[5,n-1] + p[4,n-1]
  p[3,n] = p[2,n-1] + p[1,n-1] + p[7,n-1] + p[6,n-1] + p[5,n-1]
  p[4,n] = p[3,n-1] + p[2,n-1] + p[1,n-1] + p[7,n-1] + p[6,n-1]
  p[5,n] = p[4,n-1] + p[3,n-1] + p[2,n-1] + p[1,n-1] + p[7,n-1]
  p[6,n] = p[5,n-1] + p[4,n-1] + p[3,n-1] + p[2,n-1] + p[1,n-1]
  p[7,n] = p[6,n-1] + p[5,n-1] + p[4,n-1] + p[3,n-1] + p[2,n-1]

这是我的,它试图从多个rand5()函数调用中重新创建Math.random(),通过使用“加权分数”(?)重新构造一个单位间隔(Math.random()的输出范围)。然后使用这个随机单位间隔产生一个1到7之间的随机整数:

function rand5(){
  return Math.floor(Math.random()*5)+1;
}
function rand7(){
  var uiRandom=0;
  var div=1;
  for(var i=0; i<7; i++){
    div*=5;
    var term=(rand5()-1)/div;
    uiRandom+=term;
  }
  //return uiRandom;
  return Math.floor(uiRandom*7)+1; 
}

解释一下:我们取一个0-4之间的随机整数(只是rand5()-1),然后将每个结果乘以1/ 5,1 / 25,1 /125,…然后把它们加起来。这类似于二元加权分数的工作原理;相反,我认为我们将其称为五(以5为底)加权分数:产生一个从0 - 0.999999作为一系列(1/5)^n项的数字。

修改函数以获取任何输入/输出随机整数范围应该是简单的。上面的代码可以在重写为闭包时进行优化。


或者,我们也可以这样做:

function rand5(){
  return Math.floor(Math.random()*5)+1;
}
function rand7(){
  var buffer=[];
  var div=1;
  for (var i=0; i<7; i++){
    buffer.push((rand5()-1).toString(5));
    div*=5;
  }
  var n=parseInt(buffer.join(""),5);
  var uiRandom=n/div;
  //return uiRandom;
  return Math.floor(uiRandom*7)+1; 
}

我们不需要费力地构造一个五进制(以5为基数)加权分数,而是实际地构造一个五进制数,并将其转化为一个分数(0—0.9999…和前面一样),然后从那里计算随机的1- 7位数字。

上面的结果(代码片段#2:运行3次,每次100,000次调用):

1: 14263; 2: 14414; 3: 14249; 4: 14109; 5: 14217; 6: 14361; 7: 14387 1: 14205; 2: 14394; 3: 14238; 4: 14187; 5: 14384; 6: 14224; 7: 14368 1: 14425; 2: 14236; 3: 14334; 4: 14232; 5: 14160; 6: 14320; 7: 14293

这里有很多解决方案没有产生均匀分布,许多评论指出了这一点,但这个问题并没有把它作为一个要求。最简单的解决方案是:

int rand_7() { return rand_5(); }

1 - 5范围内的随机整数显然在1 - 7范围内。从技术上讲,最简单的解决方法是返回一个常数,但那太琐碎了。

然而,我认为rand_5函数的存在是一个转移注意力的问题。假设问题是“生成一个均匀分布的伪随机数生成器,输出范围为1 - 7”。这是一个简单的问题(技术上不简单,但已经解决了,所以您可以查阅它)。

另一方面,如果问题被解释为你实际上有一个真正的随机数生成器,用于范围为1 - 5的整数(而不是伪随机),那么解决方案是:

1) examine the rand_5 function
2) understand how it works
3) profit

为什么不除以5再乘以7,然后四舍五入呢?(当然,你必须使用浮点数no.)

它比其他解决方案更简单、更可靠(真的吗?)例如,在Python中:

def ranndomNo7():
    import random
    rand5 = random.randint(4)    # Produces range: [0, 4]
    rand7 = int(rand5 / 5 * 7)   # /5, *7, +0.5 and floor()
    return rand7

这不是很容易吗?