给定一个函数,它产生的是1到5之间的随机整数,写一个函数,它产生的是1到7之间的随机整数。


当前回答

我首先想到的是这个。但我不知道它是否均匀分布。 在python中实现

进口随机 def rand5 (): 返回random.randint(1、5) def rand7 (): 返回((rand5() -1) * rand5()) %7)+1

其他回答

在php中

function rand1to7() {
    do {
        $output_value = 0;
        for ($i = 0; $i < 28; $i++) {
            $output_value += rand1to5();
        }
    while ($output_value != 140);
    $output_value -= 12;
    return floor($output_value / 16);
}

循环生成16到127之间的随机数,除以16生成1到7.9375之间的浮点数,然后舍入得到1到7之间的整数。如果我没记错的话,得到7个结果中的任何一个的概率都是16/112。

这个解决方案受到了Rob McAfee的启发。 然而,它不需要循环,结果是一个均匀分布:

// Returns 1-5
var rnd5 = function(){
   return parseInt(Math.random() * 5, 10) + 1;
}
// Helper
var lastEdge = 0;
// Returns 1-7
var rnd7 = function () {
  var map = [
     [ 1, 2, 3, 4, 5 ],
     [ 6, 7, 1, 2, 3 ],
     [ 4, 5, 6, 7, 1 ],
     [ 2, 3, 4, 5, 6 ],
     [ 7, 0, 0, 0, 0 ]
  ];
  var result = map[rnd5() - 1][rnd5() - 1];
  if (result > 0) {
    return result;
  }
  lastEdge++;
  if (lastEdge > 7 ) {
    lastEdge = 1;
  }
  return lastEdge;
};

// Test the a uniform distribution
results = {}; for(i=0; i < 700000;i++) { var rand = rnd7(); results[rand] = results[rand] ? results[rand] + 1 : 1;} 
console.log(results)

结果:[1:99560,2:99932,3:100355,4:100262,5:99603,6:100062,7:100226]

js小提琴

int rand7() {
    int value = rand5()
              + rand5() * 2
              + rand5() * 3
              + rand5() * 4
              + rand5() * 5
              + rand5() * 6;
    return value%7;
}

与选定的解决方案不同,该算法将在常数时间内运行。然而,它对rand5的调用比所选解决方案的平均运行时间多2次。

请注意,这个生成器并不完美(数字0比任何其他数字都有0.0064%的可能性),但对于大多数实际目的,保证恒定的时间可能比这种不准确性更重要。

解释

这个解源于数字15624能被7整除的事实,因此,如果我们可以随机且均匀地生成从0到15624的数字,然后对7取余,我们就可以得到一个近乎均匀的rand7生成器。将rand5滚动6次,将0到15624之间的数字统一生成,并使用这些数字组成以5为基数的数字,如下所示:

rand5 * 5^5 + rand5 * 5^4 + rand5 * 5^3 + rand5 * 5^2 + rand5 * 5 + rand5

mod 7的属性允许我们稍微简化一下方程:

5^5 = 3 mod 7
5^4 = 2 mod 7
5^3 = 6 mod 7
5^2 = 4 mod 7
5^1 = 5 mod 7

So

rand5 * 5^5 + rand5 * 5^4 + rand5 * 5^3 + rand5 * 5^2 + rand5 * 5 + rand5

就变成了

rand5 * 3 + rand5 * 2 + rand5 * 6 + rand5 * 4 + rand5 * 5 + rand5

理论

15624这个数字不是随机选择的,而是可以用费马小定理来发现的,该定理指出,如果p是质数,那么

a^(p-1) = 1 mod p

这就得到,

(5^6)-1 = 0 mod 7

(5^6)-1等于

4 * 5^5 + 4 * 5^4 + 4 * 5^3 + 4 * 5^2 + 4 * 5 + 4

这是一个以5为底的数,因此我们可以看到,这种方法可以用于从任何随机数发生器到任何其他随机数发生器。尽管在使用指数p-1时总是会引入对0的小偏差。

为了更准确地推广这种方法,我们可以有这样一个函数:

def getRandomconverted(frm, to):
    s = 0
    for i in range(to):
        s += getRandomUniform(frm)*frm**i
    mx = 0
    for i in range(to):
        mx = (to-1)*frm**i 
    mx = int(mx/to)*to # maximum value till which we can take mod
    if s < mx:
        return s%to
    else:
        return getRandomconverted(frm, to)

这是我在看过别人的答案后得出的最简单的答案:

def r5tor7():
    while True:
        cand = (5 * r5()) + r5()
        if cand < 27:
            return cand

Cand在[6,27]范围内,如果r5()的可能结果是均匀分布的,则可能结果是均匀分布的。你可以用下面的代码来测试我的答案:

from collections import defaultdict

def r5_outcome(n):
    if not n:
        yield []
    else:
        for i in range(1, 6):
            for j in r5_outcome(n-1):
                yield [i] + j

def test_r7():
    d = defaultdict(int)
    for x in r5_outcome(2):
        s = sum([x[i] * 5**i for i in range(len(x))])
        if s < 27:
            d[s] += 1
    print len(d), d

R5_outcome(2)生成r5()结果的所有可能组合。我使用与解决方案代码中相同的筛选器进行测试。你可以看到所有的结果都是相等的,因为它们有相同的值。

int ans = 0;
while (ans == 0) 
{
     for (int i=0; i<3; i++) 
     {
          while ((r = rand5()) == 3){};
          ans += (r < 3) >> i
     }
}