给定一个函数,它产生的是1到5之间的随机整数,写一个函数,它产生的是1到7之间的随机整数。


当前回答

我首先想到的是这个。但我不知道它是否均匀分布。 在python中实现

进口随机 def rand5 (): 返回random.randint(1、5) def rand7 (): 返回((rand5() -1) * rand5()) %7)+1

其他回答

在php中

function rand1to7() {
    do {
        $output_value = 0;
        for ($i = 0; $i < 28; $i++) {
            $output_value += rand1to5();
        }
    while ($output_value != 140);
    $output_value -= 12;
    return floor($output_value / 16);
}

循环生成16到127之间的随机数,除以16生成1到7.9375之间的浮点数,然后舍入得到1到7之间的整数。如果我没记错的话,得到7个结果中的任何一个的概率都是16/112。

产生近似均匀分布的常数时间解。诀窍是625恰好能被7整除当你增加到这个范围时,你可以得到均匀的分布。

编辑:我的错,我算错了,但我不会把它拉下来,以防有人觉得它有用/有趣。毕竟它确实有效……:)

int rand5()
{
    return (rand() % 5) + 1;
}

int rand25()
{ 
    return (5 * (rand5() - 1) + rand5());
}

int rand625()
{
    return (25 * (rand25() - 1) + rand25());
}

int rand7()
{
    return ((625 * (rand625() - 1) + rand625()) - 1) % 7 + 1;
}

这里是我的一般实现,在给定一个范围为[0,B-1]的均匀发生器的情况下,生成范围为[0,N-1]的均匀。

public class RandomUnif {

    public static final int BASE_NUMBER = 5;

    private static Random rand = new Random();

    /** given generator, returns uniform integer in the range 0.. BASE_NUMBER-1
    public static int randomBASE() {
        return rand.nextInt(BASE_NUMBER);
    }

    /** returns uniform integer in the range 0..n-1 using randomBASE() */
    public static int randomUnif(int n) {
        int rand, factor;
        if( n <= 1 ) return 0;
        else if( n == BASE_NUMBER ) return randomBASE();
        if( n < BASE_NUMBER ) {
            factor = BASE_NUMBER / n;
            do
                rand = randomBASE() / factor;
            while(rand >= n);
            return rand;
        } else {
            factor = (n - 1) / BASE_NUMBER + 1;
            do {
                rand = factor * randomBASE() + randomUnif(factor);
            } while(rand >= n);
            return rand;
        }
    }
}

不是特别高效,但一般和紧凑。对基生成器的均值调用:

 n  calls
 2  1.250 
 3  1.644 
 4  1.252 
 5  1.000 
 6  3.763 
 7  3.185 
 8  2.821 
 9  2.495 
10  2.250 
11  3.646 
12  3.316 
13  3.060 
14  2.853 
15  2.650 
16  2.814 
17  2.644 
18  2.502 
19  2.361 
20  2.248 
21  2.382 
22  2.277 
23  2.175 
24  2.082 
25  2.000 
26  5.472 
27  5.280 
28  5.119 
29  4.899 

简单高效:

int rand7 ( void )
{
    return 4; // this number has been calculated using
              // rand5() and is in the range 1..7
}

(灵感来自你最喜欢的“程序员”卡通?)

假设rand(n)在这里表示“从0到n-1均匀分布的随机整数”,下面是使用Python的randint的代码示例,它具有这种效果。它只使用randint(5)和常量来产生randint(7)的效果。其实有点傻

from random import randint
sum = 7
while sum >= 7:
    first = randint(0,5)   
    toadd = 9999
    while toadd>1:
        toadd = randint(0,5)
    if toadd:
        sum = first+5
    else:
        sum = first

assert 7>sum>=0 
print sum