给定一个函数,它产生的是1到5之间的随机整数,写一个函数,它产生的是1到7之间的随机整数。


当前回答

面对这么复杂的答案,我觉得自己很蠢。

为什么不能:

int random1_to_7()
{
  return (random1_to_5() * 7) / 5;  
}

?

其他回答

我玩了一下,我为这个Rand(7)算法写了“测试环境”。例如,如果你想尝试哪种分布给你的算法,或者需要多少次迭代才能生成所有不同的随机值(对于Rand(7) 1-7),你可以使用它。

我的核心算法是:

return (Rand5() + Rand5()) % 7 + 1;

和亚当·罗森菲尔德的分布一样均匀。(我将其包含在代码片段中)

private static int Rand7WithRand5()
{
    //PUT YOU FAVOURITE ALGORITHM HERE//

    //1. Stackoverflow winner
    int i;
    do
    {
        i = 5 * (Rand5() - 1) + Rand5(); // i is now uniformly random between 1 and 25
    } while (i > 21);
    // i is now uniformly random between 1 and 21
    return i % 7 + 1;

    //My 2 cents
    //return (Rand5() + Rand5()) % 7 + 1;
}

这个“测试环境”可以采用任何Rand(n)算法并测试和评估它(分布和速度)。只需将代码放入“Rand7WithRand5”方法并运行代码片段。

一些观察:

亚当·罗森菲尔德(Adam Rosenfield)的算法并不比我的算法分布得更好。不管怎样,两种算法的分布都很糟糕。 本机Rand7(随机的。Next(1,8))完成,因为它在大约200+迭代中生成了给定间隔内的所有成员,Rand7WithRand5算法的顺序为10k(约30-70k) 真正的挑战不是编写从Rand(5)生成Rand(7)的方法,而是生成几乎均匀分布的值。

产生近似均匀分布的常数时间解。诀窍是625恰好能被7整除当你增加到这个范围时,你可以得到均匀的分布。

编辑:我的错,我算错了,但我不会把它拉下来,以防有人觉得它有用/有趣。毕竟它确实有效……:)

int rand5()
{
    return (rand() % 5) + 1;
}

int rand25()
{ 
    return (5 * (rand5() - 1) + rand5());
}

int rand625()
{
    return (25 * (rand25() - 1) + rand25());
}

int rand7()
{
    return ((625 * (rand625() - 1) + rand625()) - 1) % 7 + 1;
}

这相当于Adam Rosenfield的解决方案,但对一些读者来说可能更清楚一些。它假设rand5()是一个函数,返回1到5范围内的统计随机整数。

int rand7()
{
    int vals[5][5] = {
        { 1, 2, 3, 4, 5 },
        { 6, 7, 1, 2, 3 },
        { 4, 5, 6, 7, 1 },
        { 2, 3, 4, 5, 6 },
        { 7, 0, 0, 0, 0 }
    };

    int result = 0;
    while (result == 0)
    {
        int i = rand5();
        int j = rand5();
        result = vals[i-1][j-1];
    }
    return result;
}

How does it work? Think of it like this: imagine printing out this double-dimension array on paper, tacking it up to a dart board and randomly throwing darts at it. If you hit a non-zero value, it's a statistically random value between 1 and 7, since there are an equal number of non-zero values to choose from. If you hit a zero, just keep throwing the dart until you hit a non-zero. That's what this code is doing: the i and j indexes randomly select a location on the dart board, and if we don't get a good result, we keep throwing darts.

就像亚当说的,在最坏的情况下,它可以一直运行下去,但从统计上看,最坏的情况永远不会发生。:)

rand7() = (rand5()+rand5()+rand5()+rand5()+rand5()+rand5()+rand5())%7+1

编辑:这并不奏效。误差约为千分之二(假设是完美的rand5)。桶得到:

value   Count  Error%
1       11158  -0.0035
2       11144  -0.0214
3       11144  -0.0214
4       11158  -0.0035
5       11172  +0.0144
6       11177  +0.0208
7       11172  +0.0144

通过转换到的和

n   Error%
10  +/- 1e-3,
12  +/- 1e-4,
14  +/- 1e-5,
16  +/- 1e-6,
...
28  +/- 3e-11

似乎每增加2就增加一个数量级

BTW:上面的误差表不是通过采样产生的,而是通过以下递归关系产生的:

P [x,n]是给定n次调用rand5,输出=x可能发生的次数。

  p[1,1] ... p[5,1] = 1
  p[6,1] ... p[7,1] = 0

  p[1,n] = p[7,n-1] + p[6,n-1] + p[5,n-1] + p[4,n-1] + p[3,n-1]
  p[2,n] = p[1,n-1] + p[7,n-1] + p[6,n-1] + p[5,n-1] + p[4,n-1]
  p[3,n] = p[2,n-1] + p[1,n-1] + p[7,n-1] + p[6,n-1] + p[5,n-1]
  p[4,n] = p[3,n-1] + p[2,n-1] + p[1,n-1] + p[7,n-1] + p[6,n-1]
  p[5,n] = p[4,n-1] + p[3,n-1] + p[2,n-1] + p[1,n-1] + p[7,n-1]
  p[6,n] = p[5,n-1] + p[4,n-1] + p[3,n-1] + p[2,n-1] + p[1,n-1]
  p[7,n] = p[6,n-1] + p[5,n-1] + p[4,n-1] + p[3,n-1] + p[2,n-1]

为什么这行不通?除了对rand5()的额外调用之外?

i = rand5() + rand5() + (rand5() - 1) //Random number between 1 and 14

i = i % 7 + 1;