给定一个函数,它产生的是1到5之间的随机整数,写一个函数,它产生的是1到7之间的随机整数。


当前回答

面对这么复杂的答案,我觉得自己很蠢。

为什么不能:

int random1_to_7()
{
  return (random1_to_5() * 7) / 5;  
}

?

其他回答

简单高效:

int rand7 ( void )
{
    return 4; // this number has been calculated using
              // rand5() and is in the range 1..7
}

(灵感来自你最喜欢的“程序员”卡通?)

function rand7() {
    while (true) { //lowest base 5 random number > 7 reduces memory
        int num = (rand5()-1)*5 + rand5()-1;
    if (num < 21)  // improves performance
        return 1 + num%7;
    }
}

Python代码:

from random import randint
def rand7():
    while(True):
        num = (randint(1, 5)-1)*5 + randint(1, 5)-1
        if num < 21:
                return 1 + num%7

100000次运行的测试分布:

>>> rnums = []
>>> for _ in range(100000):
    rnums.append(rand7())
>>> {n:rnums.count(n) for n in set(rnums)}
{1: 15648, 2: 15741, 3: 15681, 4: 15847, 5: 15642, 6: 15806, 7: 15635}

这里似乎没有提到的另一个答案:

int rand7() {
  int r = 7 / 2;
  for (int i = 0; i < 28; i++)
    r = ((rand5() - 1) * 7 + r) / 5;
  return r + 1;
}

在每次迭代中,r是一个0到6之间的随机值。它被追加(以7为基数)到一个0到4(包括4)之间的随机值,结果除以5,得到一个0到6(包括6)范围内的新随机值。R开始时有很大的偏差(R = 3是非常有偏差的!),但每次迭代都将偏差除以5。

这种方法不是完全均匀的;然而,偏差是微乎其微的。数量级为1/(2**64)这种方法的重要之处在于它具有恒定的执行时间(假设rand5()也具有恒定的执行时间)。理论上不需要担心一个不走运的调用可能永远迭代地选择坏值。


此外,还有一个讽刺的回答(有意无意,它已经被覆盖了):

1-5已经在1-7的范围内,因此下面是一个有效的实现:

int rand7() {
  return rand5();
}

问题没有要求均匀分布。

在php中

function rand1to7() {
    do {
        $output_value = 0;
        for ($i = 0; $i < 28; $i++) {
            $output_value += rand1to5();
        }
    while ($output_value != 140);
    $output_value -= 12;
    return floor($output_value / 16);
}

循环生成16到127之间的随机数,除以16生成1到7.9375之间的浮点数,然后舍入得到1到7之间的整数。如果我没记错的话,得到7个结果中的任何一个的概率都是16/112。

//返回0-5之间概率相等的随机数 函数rand5() { return Math.floor(Math.random() * 6); } //返回0-7之间概率相等的随机数 函数rand7() { If (rand5() % 2 == 0 && rand5() % 2 == 0) { 返回6 + rand5() % 2; }其他{ 返回rand5 (); } } console.log (rand7 ());