给定一个函数,它产生的是1到5之间的随机整数,写一个函数,它产生的是1到7之间的随机整数。
当前回答
这是我的,它试图从多个rand5()函数调用中重新创建Math.random(),通过使用“加权分数”(?)重新构造一个单位间隔(Math.random()的输出范围)。然后使用这个随机单位间隔产生一个1到7之间的随机整数:
function rand5(){
return Math.floor(Math.random()*5)+1;
}
function rand7(){
var uiRandom=0;
var div=1;
for(var i=0; i<7; i++){
div*=5;
var term=(rand5()-1)/div;
uiRandom+=term;
}
//return uiRandom;
return Math.floor(uiRandom*7)+1;
}
解释一下:我们取一个0-4之间的随机整数(只是rand5()-1),然后将每个结果乘以1/ 5,1 / 25,1 /125,…然后把它们加起来。这类似于二元加权分数的工作原理;相反,我认为我们将其称为五(以5为底)加权分数:产生一个从0 - 0.999999作为一系列(1/5)^n项的数字。
修改函数以获取任何输入/输出随机整数范围应该是简单的。上面的代码可以在重写为闭包时进行优化。
或者,我们也可以这样做:
function rand5(){
return Math.floor(Math.random()*5)+1;
}
function rand7(){
var buffer=[];
var div=1;
for (var i=0; i<7; i++){
buffer.push((rand5()-1).toString(5));
div*=5;
}
var n=parseInt(buffer.join(""),5);
var uiRandom=n/div;
//return uiRandom;
return Math.floor(uiRandom*7)+1;
}
我们不需要费力地构造一个五进制(以5为基数)加权分数,而是实际地构造一个五进制数,并将其转化为一个分数(0—0.9999…和前面一样),然后从那里计算随机的1- 7位数字。
上面的结果(代码片段#2:运行3次,每次100,000次调用):
1: 14263; 2: 14414; 3: 14249; 4: 14109; 5: 14217; 6: 14361; 7: 14387 1: 14205; 2: 14394; 3: 14238; 4: 14187; 5: 14384; 6: 14224; 7: 14368 1: 14425; 2: 14236; 3: 14334; 4: 14232; 5: 14160; 6: 14320; 7: 14293
其他回答
以下是我的发现:
Random5产生1~5的范围,随机分布 如果我们运行3次并将它们加在一起,我们将得到3~15个随机分布的范围 在3~15范围内执行算术 (3~15) - 1 = (2~14) (2~14)/2 = (1~7)
然后我们得到1~7的范围,这是我们正在寻找的Random7。
PHP解决方案
<?php
function random_5(){
return rand(1,5);
}
function random_7(){
$total = 0;
for($i=0;$i<7;$i++){
$total += random_5();
}
return ($total%7)+1;
}
echo random_7();
?>
我玩了一下,我为这个Rand(7)算法写了“测试环境”。例如,如果你想尝试哪种分布给你的算法,或者需要多少次迭代才能生成所有不同的随机值(对于Rand(7) 1-7),你可以使用它。
我的核心算法是:
return (Rand5() + Rand5()) % 7 + 1;
和亚当·罗森菲尔德的分布一样均匀。(我将其包含在代码片段中)
private static int Rand7WithRand5()
{
//PUT YOU FAVOURITE ALGORITHM HERE//
//1. Stackoverflow winner
int i;
do
{
i = 5 * (Rand5() - 1) + Rand5(); // i is now uniformly random between 1 and 25
} while (i > 21);
// i is now uniformly random between 1 and 21
return i % 7 + 1;
//My 2 cents
//return (Rand5() + Rand5()) % 7 + 1;
}
这个“测试环境”可以采用任何Rand(n)算法并测试和评估它(分布和速度)。只需将代码放入“Rand7WithRand5”方法并运行代码片段。
一些观察:
亚当·罗森菲尔德(Adam Rosenfield)的算法并不比我的算法分布得更好。不管怎样,两种算法的分布都很糟糕。 本机Rand7(随机的。Next(1,8))完成,因为它在大约200+迭代中生成了给定间隔内的所有成员,Rand7WithRand5算法的顺序为10k(约30-70k) 真正的挑战不是编写从Rand(5)生成Rand(7)的方法,而是生成几乎均匀分布的值。
面对这么复杂的答案,我觉得自己很蠢。
为什么不能:
int random1_to_7()
{
return (random1_to_5() * 7) / 5;
}
?
package CareerCup;
public class RangeTransform {
static int counter = (int)(Math.random() * 5 + 1);
private int func() {
return (int) (Math.random() * 5 + 1);
}
private int getMultiplier() {
return counter % 5 + 1;
}
public int rangeTransform() {
counter++;
int count = getMultiplier();
int mult = func() + 5 * count;
System.out.println("Mult is : " + 5 * count);
return (mult) % 7 + 1;
}
/**
* @param args
*/
public static void main(String[] args) {
// TODO Auto-generated method stub
RangeTransform rangeTransform = new RangeTransform();
for (int i = 0; i < 35; i++)
System.out.println("Val is : " + rangeTransform.rangeTransform());
}
}