给定一个函数,它产生的是1到5之间的随机整数,写一个函数,它产生的是1到7之间的随机整数。


当前回答

我玩了一下,我为这个Rand(7)算法写了“测试环境”。例如,如果你想尝试哪种分布给你的算法,或者需要多少次迭代才能生成所有不同的随机值(对于Rand(7) 1-7),你可以使用它。

我的核心算法是:

return (Rand5() + Rand5()) % 7 + 1;

和亚当·罗森菲尔德的分布一样均匀。(我将其包含在代码片段中)

private static int Rand7WithRand5()
{
    //PUT YOU FAVOURITE ALGORITHM HERE//

    //1. Stackoverflow winner
    int i;
    do
    {
        i = 5 * (Rand5() - 1) + Rand5(); // i is now uniformly random between 1 and 25
    } while (i > 21);
    // i is now uniformly random between 1 and 21
    return i % 7 + 1;

    //My 2 cents
    //return (Rand5() + Rand5()) % 7 + 1;
}

这个“测试环境”可以采用任何Rand(n)算法并测试和评估它(分布和速度)。只需将代码放入“Rand7WithRand5”方法并运行代码片段。

一些观察:

亚当·罗森菲尔德(Adam Rosenfield)的算法并不比我的算法分布得更好。不管怎样,两种算法的分布都很糟糕。 本机Rand7(随机的。Next(1,8))完成,因为它在大约200+迭代中生成了给定间隔内的所有成员,Rand7WithRand5算法的顺序为10k(约30-70k) 真正的挑战不是编写从Rand(5)生成Rand(7)的方法,而是生成几乎均匀分布的值。

其他回答

这个解决方案不浪费任何熵,并给出了范围内第一个可用的真正随机数。随着每一次迭代,得不到答案的概率可证明地降低了。在N次迭代中得到答案的概率是0到max (5^N)之间的随机数小于该范围内7的最大倍数(max-max%7)的概率。必须迭代至少两次。但这对所有解都是成立的。

int random7() {
  range = 1;
  remainder = 0;

  while (1) {
    remainder = remainder * 5 + random5() - 1;
    range = range * 5;

    limit = range - (range % 7);
    if (remainder < limit) return (remainder % 7) + 1;

    remainder = remainder % 7;
    range = range % 7;
  }
}

数值上等价于:

r5=5;
num=random5()-1;
while (1) {
   num=num*5+random5()-1;
   r5=r5*5;
   r7=r5-r5%7;
   if (num<r7) return num%7+1;
}

第一个代码以模形式计算。第二个代码只是简单的数学。或者我在某个地方犯了错误。: -)

int randbit( void )
{
    while( 1 )
    {
        int r = rand5();
        if( r <= 4 ) return(r & 1);
    }
}

int randint( int nbits )
{
    int result = 0;
    while( nbits-- )
    {
        result = (result<<1) | randbit();
    }
    return( result );
}

int rand7( void )
{
    while( 1 )
    {
        int r = randint( 3 ) + 1;
        if( r <= 7 ) return( r );
    }
}
rand25() =5*(rand5()-1) + rand5()

rand7() { 
   while(true) {
       int r = rand25();
       if (r < 21) return r%3;         
   }
}

为什么这样做:循环永远运行的概率是0。

我不喜欢从1开始的范围,所以我将从0开始:-)

unsigned rand5()
{
    return rand() % 5;
}

unsigned rand7()
{
    int r;

    do
    {
        r =         rand5();
        r = r * 5 + rand5();
        r = r * 5 + rand5();
        r = r * 5 + rand5();
        r = r * 5 + rand5();
        r = r * 5 + rand5();
    } while (r > 15623);

    return r / 2232;
}

对于0-7的值,你有以下内容:

0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

从左到右,Rand5()有p(1) ={2/ 5,2 / 5,3 /5}。因此,如果我们补这些概率分布(~Rand5()),我们应该能够使用它来生成我们的数字。我稍后会给出解决方案。有人有什么想法吗?

R