给定一个函数,它产生的是1到5之间的随机整数,写一个函数,它产生的是1到7之间的随机整数。


当前回答

我玩了一下,我为这个Rand(7)算法写了“测试环境”。例如,如果你想尝试哪种分布给你的算法,或者需要多少次迭代才能生成所有不同的随机值(对于Rand(7) 1-7),你可以使用它。

我的核心算法是:

return (Rand5() + Rand5()) % 7 + 1;

和亚当·罗森菲尔德的分布一样均匀。(我将其包含在代码片段中)

private static int Rand7WithRand5()
{
    //PUT YOU FAVOURITE ALGORITHM HERE//

    //1. Stackoverflow winner
    int i;
    do
    {
        i = 5 * (Rand5() - 1) + Rand5(); // i is now uniformly random between 1 and 25
    } while (i > 21);
    // i is now uniformly random between 1 and 21
    return i % 7 + 1;

    //My 2 cents
    //return (Rand5() + Rand5()) % 7 + 1;
}

这个“测试环境”可以采用任何Rand(n)算法并测试和评估它(分布和速度)。只需将代码放入“Rand7WithRand5”方法并运行代码片段。

一些观察:

亚当·罗森菲尔德(Adam Rosenfield)的算法并不比我的算法分布得更好。不管怎样,两种算法的分布都很糟糕。 本机Rand7(随机的。Next(1,8))完成,因为它在大约200+迭代中生成了给定间隔内的所有成员,Rand7WithRand5算法的顺序为10k(约30-70k) 真正的挑战不是编写从Rand(5)生成Rand(7)的方法,而是生成几乎均匀分布的值。

其他回答

上面引用了一些优雅的算法,但这里有一种方法可以接近它,尽管它可能是迂回的。我假设的值是从0开始的。

R2 =给出小于2的随机数生成器(样本空间= {0,1}) R8 =给出小于8的随机数生成器(样本空间= {0,1,2,3,4,5,6,7})

为了从R2生成R8,您将运行R2三次,并将所有3次运行的组合结果作为3位二进制数使用。下面是R2运行三次时的值范围:

0, 0, 0 --> 0 . . 1, 1, 1 --> 7

现在要从R8生成R7,我们只需再次运行R7,如果它返回7:

int R7() {
  do {
    x = R8();
  } while (x > 6)
  return x;
}

迂回的解决方案是从R5生成R2(就像我们从R8生成R7一样),然后从R2生成R8,然后从R8生成R7。

这个怎么样

rand5 () % + rand5 (2) + 2 (2) % + rand5 rand5 () (2) % + rand5 % + rand5 (2) 2

不确定这是均匀分布的。有什么建议吗?

只需要缩放第一个函数的输出

0) you have a number in range 1-5
1) subtract 1 to make it in range 0-4
2) multiply by (7-1)/(5-1) to make it in range 0-6
3) add 1 to increment the range: Now your result is in between 1-7

给定一个生成1到5rand5()范围内随机整数的函数,编写一个生成1到7rand7()范围内随机整数的函数

在我建议的解决方案中,我只调用rand5一次

真正的解决方案

float rand7()
{
    return (rand5() * 7.0) / 5.0 ;
}

这里的分布是缩放的,所以它直接取决于rand5的分布

整数解

int rand7()
{
    static int prev = 1;

    int cur = rand5();

    int r = cur * prev; // 1-25

    float f = r / 4.0; // 0.25-6.25

    f = f - 0.25; // 0-6

    f = f + 1.0; // 1-7

    prev = cur;

    return (int)f;
}

这里的分布取决于rand7(i) ~ rand5(i) * rand5(i-1)

rand7(0) ~ rand5(0) * 1

首先,我在1点上移动ramdom5() 6次,得到7个随机数。 其次,将7个数相加得到公和。 第三,除法的余数是7。 最后加1,得到从1到7的结果。 这个方法给出了在1到7的范围内获得数字的相等概率,除了1。1的概率略高。

public int random7(){
    Random random = new Random();
    //function (1 + random.nextInt(5)) is given
    int random1_5 = 1 + random.nextInt(5); // 1,2,3,4,5
    int random2_6 = 2 + random.nextInt(5); // 2,3,4,5,6
    int random3_7 = 3 + random.nextInt(5); // 3,4,5,6,7
    int random4_8 = 4 + random.nextInt(5); // 4,5,6,7,8
    int random5_9 = 5 + random.nextInt(5); // 5,6,7,8,9
    int random6_10 = 6 + random.nextInt(5); //6,7,8,9,10
    int random7_11 = 7 + random.nextInt(5); //7,8,9,10,11

    //sumOfRandoms is between 28 and 56
    int sumOfRandoms = random1_5 + random2_6 + random3_7 + 
                       random4_8 + random5_9 + random6_10 + random7_11;
    //result is number between 0 and 6, and
    //equals 0 if sumOfRandoms = 28 or 35 or 42 or 49 or 56 , 5 options
    //equals 1 if sumOfRandoms = 29 or 36 or 43 or 50, 4 options
    //equals 2 if sumOfRandoms = 30 or 37 or 44 or 51, 4 options
    //equals 3 if sumOfRandoms = 31 or 38 or 45 or 52, 4 options
    //equals 4 if sumOfRandoms = 32 or 39 or 46 or 53, 4 options
    //equals 5 if sumOfRandoms = 33 or 40 or 47 or 54, 4 options
    //equals 6 if sumOfRandoms = 34 or 41 or 48 or 55, 4 options
    //It means that the probabilities of getting numbers between 0 and 6 are almost equal.
    int result = sumOfRandoms % 7;
    //we should add 1 to move the interval [0,6] to the interval [1,7]
    return 1 + result;
}