给定一个函数,它产生的是1到5之间的随机整数,写一个函数,它产生的是1到7之间的随机整数。
当前回答
下面使用随机数发生器在{1,2,3,4,5,6,7}上产生均匀分布,在{1,2,3,4,5}上产生均匀分布。代码很混乱,但逻辑很清晰。
public static int random_7(Random rg) {
int returnValue = 0;
while (returnValue == 0) {
for (int i = 1; i <= 3; i++) {
returnValue = (returnValue << 1) + SimulateFairCoin(rg);
}
}
return returnValue;
}
private static int SimulateFairCoin(Random rg) {
while (true) {
int flipOne = random_5_mod_2(rg);
int flipTwo = random_5_mod_2(rg);
if (flipOne == 0 && flipTwo == 1) {
return 0;
}
else if (flipOne == 1 && flipTwo == 0) {
return 1;
}
}
}
private static int random_5_mod_2(Random rg) {
return random_5(rg) % 2;
}
private static int random_5(Random rg) {
return rg.Next(5) + 1;
}
其他回答
这个答案更像是一个从Rand5函数中获得最大熵的实验。因此,T有点不清楚,几乎可以肯定比其他实现慢得多。
假设0-4为均匀分布,0-6为均匀分布:
public class SevenFromFive
{
public SevenFromFive()
{
// this outputs a uniform ditribution but for some reason including it
// screws up the output distribution
// open question Why?
this.fifth = new ProbabilityCondensor(5, b => {});
this.eigth = new ProbabilityCondensor(8, AddEntropy);
}
private static Random r = new Random();
private static uint Rand5()
{
return (uint)r.Next(0,5);
}
private class ProbabilityCondensor
{
private readonly int samples;
private int counter;
private int store;
private readonly Action<bool> output;
public ProbabilityCondensor(int chanceOfTrueReciprocal,
Action<bool> output)
{
this.output = output;
this.samples = chanceOfTrueReciprocal - 1;
}
public void Add(bool bit)
{
this.counter++;
if (bit)
this.store++;
if (counter == samples)
{
bool? e;
if (store == 0)
e = false;
else if (store == 1)
e = true;
else
e = null;// discard for now
counter = 0;
store = 0;
if (e.HasValue)
output(e.Value);
}
}
}
ulong buffer = 0;
const ulong Mask = 7UL;
int bitsAvail = 0;
private readonly ProbabilityCondensor fifth;
private readonly ProbabilityCondensor eigth;
private void AddEntropy(bool bit)
{
buffer <<= 1;
if (bit)
buffer |= 1;
bitsAvail++;
}
private void AddTwoBitsEntropy(uint u)
{
buffer <<= 2;
buffer |= (u & 3UL);
bitsAvail += 2;
}
public uint Rand7()
{
uint selection;
do
{
while (bitsAvail < 3)
{
var x = Rand5();
if (x < 4)
{
// put the two low order bits straight in
AddTwoBitsEntropy(x);
fifth.Add(false);
}
else
{
fifth.Add(true);
}
}
// read 3 bits
selection = (uint)((buffer & Mask));
bitsAvail -= 3;
buffer >>= 3;
if (selection == 7)
eigth.Add(true);
else
eigth.Add(false);
}
while (selection == 7);
return selection;
}
}
每次调用Rand5添加到缓冲区的比特数目前是4/5 * 2,所以是1.6。 如果包括1/5的概率值,则增加0.05,因此增加1.65,但请参阅代码中的注释,我不得不禁用它。
调用Rand7消耗的比特数= 3 + 1/8 *(3 + 1/8 *(3 + 1/8 *(… 这是3 + 3/8 + 3/64 + 3/512…大约是3.42
通过从7中提取信息,我每次调用回收1/8*1/7位,大约0.018
这使得每次调用的净消耗为3.4比特,这意味着每一次Rand7调用到Rand5的比率为2.125。最优值应该是2.1。
我可以想象这种方法比这里的许多其他方法都要慢得多,除非调用Rand5的代价非常昂贵(比如调用一些外部熵源)。
如果有人能就这一点给我反馈,那就太酷了,我使用了没有assert模式的JUNIT,因为在Eclipse中运行它很容易,也很快速,我也可以只定义一个主方法。顺便说一下,我假设rand5给出的值为0-4,加上1将得到1-5,rand7也是如此……所以讨论应该是解决方案,它的分布,而不是它是从0-4还是1-5…
package random;
import java.util.Random;
import org.junit.Test;
public class RandomTest {
@Test
public void testName() throws Exception {
long times = 100000000;
int indexes[] = new int[7];
for(int i = 0; i < times; i++) {
int rand7 = rand7();
indexes[rand7]++;
}
for(int i = 0; i < 7; i++)
System.out.println("Value " + i + ": " + indexes[i]);
}
public int rand7() {
return (rand5() + rand5() + rand5() + rand5() + rand5() + rand5() + rand5()) % 7;
}
public int rand5() {
return new Random().nextInt(5);
}
}
当我运行它时,我得到这样的结果:
Value 0: 14308087
Value 1: 14298303
Value 2: 14279731
Value 3: 14262533
Value 4: 14269749
Value 5: 14277560
Value 6: 14304037
这似乎是一个非常公平的分配,不是吗?
如果我将rand5()添加更少或更多次(其中次数不能被7整除),分布会清楚地显示偏移量。例如,将rand5()相加3次:
Value 0: 15199685
Value 1: 14402429
Value 2: 12795649
Value 3: 12796957
Value 4: 14402252
Value 5: 15202778
Value 6: 15200250
因此,这将导致以下结果:
public int rand(int range) {
int randomValue = 0;
for(int i = 0; i < range; i++) {
randomValue += rand5();
}
return randomValue % range;
}
然后,我可以更进一步:
public static final int ORIGN_RANGE = 5;
public static final int DEST_RANGE = 7;
@Test
public void testName() throws Exception {
long times = 100000000;
int indexes[] = new int[DEST_RANGE];
for(int i = 0; i < times; i++) {
int rand7 = convertRand(DEST_RANGE, ORIGN_RANGE);
indexes[rand7]++;
}
for(int i = 0; i < DEST_RANGE; i++)
System.out.println("Value " + i + ": " + indexes[i]);
}
public int convertRand(int destRange, int originRange) {
int randomValue = 0;
for(int i = 0; i < destRange; i++) {
randomValue += rand(originRange);
}
return randomValue % destRange;
}
public int rand(int range) {
return new Random().nextInt(range);
}
我尝试用不同的值替换destRange和originRange(甚至ORIGIN为7,DEST为13),我得到了这样的分布:
Value 0: 7713763
Value 1: 7706552
Value 2: 7694697
Value 3: 7695319
Value 4: 7688617
Value 5: 7681691
Value 6: 7674798
Value 7: 7680348
Value 8: 7685286
Value 9: 7683943
Value 10: 7690283
Value 11: 7699142
Value 12: 7705561
从这里我可以得出的结论是,你可以通过求和起始随机“目的地”时间来将任意随机改变为任意随机。这将得到一种高斯分布(中间值更有可能,边缘值更不常见)。然而,目标模量似乎均匀地分布在这个高斯分布中…如果能得到数学家的反馈就太好了……
最酷的是,成本是100%可预测的和恒定的,而其他解决方案导致无限循环的概率很小……
以下是我的回答:
static struct rand_buffer {
unsigned v, count;
} buf2, buf3;
void push (struct rand_buffer *buf, unsigned n, unsigned v)
{
buf->v = buf->v * n + v;
++buf->count;
}
#define PUSH(n, v) push (&buf##n, n, v)
int rand16 (void)
{
int v = buf2.v & 0xf;
buf2.v >>= 4;
buf2.count -= 4;
return v;
}
int rand9 (void)
{
int v = buf3.v % 9;
buf3.v /= 9;
buf3.count -= 2;
return v;
}
int rand7 (void)
{
if (buf3.count >= 2) {
int v = rand9 ();
if (v < 7)
return v % 7 + 1;
PUSH (2, v - 7);
}
for (;;) {
if (buf2.count >= 4) {
int v = rand16 ();
if (v < 14) {
PUSH (2, v / 7);
return v % 7 + 1;
}
PUSH (2, v - 14);
}
// Get a number between 0 & 25
int v = 5 * (rand5 () - 1) + rand5 () - 1;
if (v < 21) {
PUSH (3, v / 7);
return v % 7 + 1;
}
v -= 21;
PUSH (2, v & 1);
PUSH (2, v >> 1);
}
}
它比其他的稍微复杂一点,但我相信它最小化了对rand5的调用。与其他解决方案一样,它有小概率会循环很长时间。
package CareerCup;
public class RangeTransform {
static int counter = (int)(Math.random() * 5 + 1);
private int func() {
return (int) (Math.random() * 5 + 1);
}
private int getMultiplier() {
return counter % 5 + 1;
}
public int rangeTransform() {
counter++;
int count = getMultiplier();
int mult = func() + 5 * count;
System.out.println("Mult is : " + 5 * count);
return (mult) % 7 + 1;
}
/**
* @param args
*/
public static void main(String[] args) {
// TODO Auto-generated method stub
RangeTransform rangeTransform = new RangeTransform();
for (int i = 0; i < 35; i++)
System.out.println("Val is : " + rangeTransform.rangeTransform());
}
}
这相当于Adam Rosenfield的解决方案,但对一些读者来说可能更清楚一些。它假设rand5()是一个函数,返回1到5范围内的统计随机整数。
int rand7()
{
int vals[5][5] = {
{ 1, 2, 3, 4, 5 },
{ 6, 7, 1, 2, 3 },
{ 4, 5, 6, 7, 1 },
{ 2, 3, 4, 5, 6 },
{ 7, 0, 0, 0, 0 }
};
int result = 0;
while (result == 0)
{
int i = rand5();
int j = rand5();
result = vals[i-1][j-1];
}
return result;
}
How does it work? Think of it like this: imagine printing out this double-dimension array on paper, tacking it up to a dart board and randomly throwing darts at it. If you hit a non-zero value, it's a statistically random value between 1 and 7, since there are an equal number of non-zero values to choose from. If you hit a zero, just keep throwing the dart until you hit a non-zero. That's what this code is doing: the i and j indexes randomly select a location on the dart board, and if we don't get a good result, we keep throwing darts.
就像亚当说的,在最坏的情况下,它可以一直运行下去,但从统计上看,最坏的情况永远不会发生。:)