给定一个函数,它产生的是1到5之间的随机整数,写一个函数,它产生的是1到7之间的随机整数。


当前回答

int rand7() {
    int value = rand5()
              + rand5() * 2
              + rand5() * 3
              + rand5() * 4
              + rand5() * 5
              + rand5() * 6;
    return value%7;
}

与选定的解决方案不同,该算法将在常数时间内运行。然而,它对rand5的调用比所选解决方案的平均运行时间多2次。

请注意,这个生成器并不完美(数字0比任何其他数字都有0.0064%的可能性),但对于大多数实际目的,保证恒定的时间可能比这种不准确性更重要。

解释

这个解源于数字15624能被7整除的事实,因此,如果我们可以随机且均匀地生成从0到15624的数字,然后对7取余,我们就可以得到一个近乎均匀的rand7生成器。将rand5滚动6次,将0到15624之间的数字统一生成,并使用这些数字组成以5为基数的数字,如下所示:

rand5 * 5^5 + rand5 * 5^4 + rand5 * 5^3 + rand5 * 5^2 + rand5 * 5 + rand5

mod 7的属性允许我们稍微简化一下方程:

5^5 = 3 mod 7
5^4 = 2 mod 7
5^3 = 6 mod 7
5^2 = 4 mod 7
5^1 = 5 mod 7

So

rand5 * 5^5 + rand5 * 5^4 + rand5 * 5^3 + rand5 * 5^2 + rand5 * 5 + rand5

就变成了

rand5 * 3 + rand5 * 2 + rand5 * 6 + rand5 * 4 + rand5 * 5 + rand5

理论

15624这个数字不是随机选择的,而是可以用费马小定理来发现的,该定理指出,如果p是质数,那么

a^(p-1) = 1 mod p

这就得到,

(5^6)-1 = 0 mod 7

(5^6)-1等于

4 * 5^5 + 4 * 5^4 + 4 * 5^3 + 4 * 5^2 + 4 * 5 + 4

这是一个以5为底的数,因此我们可以看到,这种方法可以用于从任何随机数发生器到任何其他随机数发生器。尽管在使用指数p-1时总是会引入对0的小偏差。

为了更准确地推广这种方法,我们可以有这样一个函数:

def getRandomconverted(frm, to):
    s = 0
    for i in range(to):
        s += getRandomUniform(frm)*frm**i
    mx = 0
    for i in range(to):
        mx = (to-1)*frm**i 
    mx = int(mx/to)*to # maximum value till which we can take mod
    if s < mx:
        return s%to
    else:
        return getRandomconverted(frm, to)

其他回答

function rand7() {
    while (true) { //lowest base 5 random number > 7 reduces memory
        int num = (rand5()-1)*5 + rand5()-1;
    if (num < 21)  // improves performance
        return 1 + num%7;
    }
}

Python代码:

from random import randint
def rand7():
    while(True):
        num = (randint(1, 5)-1)*5 + randint(1, 5)-1
        if num < 21:
                return 1 + num%7

100000次运行的测试分布:

>>> rnums = []
>>> for _ in range(100000):
    rnums.append(rand7())
>>> {n:rnums.count(n) for n in set(rnums)}
{1: 15648, 2: 15741, 3: 15681, 4: 15847, 5: 15642, 6: 15806, 7: 15635}

这里我们使用约定的rand(n) -> [0, n - 1]

从我读到的许多答案中,它们要么提供了一致性,要么提供了暂停保证,但不能同时提供(adam rosenfeld的第二个答案可能)。

然而,这样做是可能的。我们基本上有这样的分布:

这给[0-6]上的分布留下了一个漏洞:5和6没有 发生的概率。想象一下,现在我们试图通过移动 概率分布和求和。

事实上,我们可以把初始分布平移1,然后 重复将得到的分布与移位的初始分布相加 2,然后3,以此类推,直到7,不包括在内(我们涵盖了整个范围)。 如下图所示。颜色的顺序,对应 步骤,是蓝色->绿色->青色->白色->品红->黄色->红色。

因为每个插槽由7个移位分布中的5个覆盖(移位从 0到6),因为我们假设随机数是独立于1的 Ran5()呼叫另一个,我们获得

p(x) = 5 / 35 = 1 / 7       for all x in [0, 6]

这意味着,给定来自ran5()的7个独立随机数,我们可以 计算一个在[0-6]范围内具有均匀概率的随机数。 实际上是ran5()概率 分布甚至不需要均匀,只要样本是均匀的 独立(所以每次试验的分布保持不变) 同样,这也适用于5和7之外的其他数字。

这为我们提供了以下python函数:

def rand_range_transform(rands):
    """
    returns a uniform random number in [0, len(rands) - 1]
    if all r in rands are independent random numbers from the same uniform distribution
    """
    return sum((x + i) for i, x in enumerate(rands)) % len(rands) # a single modulo outside the sum is enough in modulo arithmetic

可以这样使用:

rand5 = lambda : random.randrange(5)

def rand7():
    return rand_range_transform([rand5() for _ in range(7)])

如果我们调用rand7() 70000次,我们可以得到:

max: 6 min: 0 mean: 2.99711428571 std: 2.00194697049
0:  10019
1:  10016
2:  10071
3:  10044
4:  9775
5:  10042
6:  10033

这很好,尽管远非完美。事实上,我们的一个假设是 在这个实现中很可能是false:我们使用一个PRNG,因此,结果 的值依赖于上一个结果。

也就是说,使用一个真正随机的数字来源,输出也应该是 真正随机的。这个算法在任何情况下都终止。

但这是有代价的:我们需要为一个rand7()调用7次rand5() 调用。

这个解决方案不浪费任何熵,并给出了范围内第一个可用的真正随机数。随着每一次迭代,得不到答案的概率可证明地降低了。在N次迭代中得到答案的概率是0到max (5^N)之间的随机数小于该范围内7的最大倍数(max-max%7)的概率。必须迭代至少两次。但这对所有解都是成立的。

int random7() {
  range = 1;
  remainder = 0;

  while (1) {
    remainder = remainder * 5 + random5() - 1;
    range = range * 5;

    limit = range - (range % 7);
    if (remainder < limit) return (remainder % 7) + 1;

    remainder = remainder % 7;
    range = range % 7;
  }
}

数值上等价于:

r5=5;
num=random5()-1;
while (1) {
   num=num*5+random5()-1;
   r5=r5*5;
   r7=r5-r5%7;
   if (num<r7) return num%7+1;
}

第一个代码以模形式计算。第二个代码只是简单的数学。或者我在某个地方犯了错误。: -)

从一个扩大浮动范围的链接来到这里。这个更有趣。而不是我是如何得出结论的,我突然想到,对于一个给定的随机整数生成函数f,以“基数”b(在这种情况下是4,我会告诉为什么),它可以展开如下:

(b^0 * f() + b^1 * f() + b^2 * f() .... b^p * f()) / (b^(p+1) - 1) * (b-1)

这将把随机生成器转换为FLOAT生成器。我将在这里定义2个参数b和p。虽然这里的“基数”是4,但b实际上可以是任何东西,它也可以是无理数等p,我称之为精度是你想要的浮点生成器的良好粒度的程度。可以把这看作是对rand7的每次调用对rand5的调用数。

但我意识到,如果你把b设为底数+1(在这种情况下是4+1 = 5),这是一个最佳点,你会得到均匀的分布。首先摆脱这个1-5生成器,它实际上是rand4() + 1:

function rand4(){
    return Math.random() * 5 | 0;
}

为了达到这个目的,你可以用rand5()-1替换rand4

接下来是将rand4从整数生成器转换为浮点生成器

function toFloat(f,b,p){
    b = b || 2;
    p = p || 3;
    return (Array.apply(null,Array(p))
    .map(function(d,i){return f()})
    .map(function(d,i){return Math.pow(b,i)*d})
    .reduce(function(ac,d,i){return ac += d;}))
    /
    (
        (Math.pow(b,p) - 1)
        /(b-1)
    )
}

这将把我写的第一个函数应用到一个给定的rand函数。试一试:

toFloat(rand4) //1.4285714285714286 base = 2, precision = 3
toFloat(rand4,3,4) //0.75 base = 3, precision = 4
toFloat(rand4,4,5) //3.7507331378299122 base = 4, precision = 5
toFloat(rand4,5,6) //0.2012288786482335 base = 5, precision =6
...

现在,您可以将这个浮动范围(0-4 include)转换为任何其他浮动范围,然后将其降级为整数。这里我们的底是4,因为我们处理的是rand4,因此b=5的值会给你一个均匀分布。当b增长超过4时,你将开始在分布中引入周期性间隙。我测试了从2到8的b值,每个值都有3000分,并与原生数学进行了比较。随机的javascript,在我看来甚至比本机本身更好:

http://jsfiddle.net/ibowankenobi/r57v432t/

对于上面的链接,单击分布顶部的“bin”按钮以减小分箱大小。最后一个图表是原生数学。随机的,第四个d=5是均匀的。

在你得到浮动范围后,要么与7相乘并抛出小数部分,要么与7相乘,减去0.5并四舍五入:

((toFloat(rand4,5,6)/4 * 7) | 0) + 1   ---> occasionally you'll get 8 with 1/4^6 probability.
Math.round((toFloat(rand4,5,6)/4 * 7) - 0.5) + 1 --> between 1 and 7

对于范围[1,5]到[1,7],这相当于用一个5面骰子滚动一个7面骰子。

然而,如果不“浪费”随机性(或者在最坏的情况下永远运行),就无法做到这一点,因为7的所有质因数(即7)都不能整除5。因此,最好的方法是使用拒绝抽样来获得任意接近于不“浪费”随机性的结果(例如,将多个5面骰子摇到5^n“足够接近”7的幂)。这个问题的解决方案已经在其他答案中给出了。

更一般地说,用p面骰子掷k面骰子的算法将不可避免地“浪费”随机性(并且在最坏的情况下永远运行),除非“每个质数能除k也能除p”,根据B. Kloeckner的“用骰子模拟骰子”中的引理3。例如,举一个更实际的例子,p是2的幂,k是任意的。在这种情况下,这种“浪费”和无限的运行时间是不可避免的,除非k也是2的幂。