给定一个函数,它产生的是1到5之间的随机整数,写一个函数,它产生的是1到7之间的随机整数。


当前回答

这里我们使用约定的rand(n) -> [0, n - 1]

从我读到的许多答案中,它们要么提供了一致性,要么提供了暂停保证,但不能同时提供(adam rosenfeld的第二个答案可能)。

然而,这样做是可能的。我们基本上有这样的分布:

这给[0-6]上的分布留下了一个漏洞:5和6没有 发生的概率。想象一下,现在我们试图通过移动 概率分布和求和。

事实上,我们可以把初始分布平移1,然后 重复将得到的分布与移位的初始分布相加 2,然后3,以此类推,直到7,不包括在内(我们涵盖了整个范围)。 如下图所示。颜色的顺序,对应 步骤,是蓝色->绿色->青色->白色->品红->黄色->红色。

因为每个插槽由7个移位分布中的5个覆盖(移位从 0到6),因为我们假设随机数是独立于1的 Ran5()呼叫另一个,我们获得

p(x) = 5 / 35 = 1 / 7       for all x in [0, 6]

这意味着,给定来自ran5()的7个独立随机数,我们可以 计算一个在[0-6]范围内具有均匀概率的随机数。 实际上是ran5()概率 分布甚至不需要均匀,只要样本是均匀的 独立(所以每次试验的分布保持不变) 同样,这也适用于5和7之外的其他数字。

这为我们提供了以下python函数:

def rand_range_transform(rands):
    """
    returns a uniform random number in [0, len(rands) - 1]
    if all r in rands are independent random numbers from the same uniform distribution
    """
    return sum((x + i) for i, x in enumerate(rands)) % len(rands) # a single modulo outside the sum is enough in modulo arithmetic

可以这样使用:

rand5 = lambda : random.randrange(5)

def rand7():
    return rand_range_transform([rand5() for _ in range(7)])

如果我们调用rand7() 70000次,我们可以得到:

max: 6 min: 0 mean: 2.99711428571 std: 2.00194697049
0:  10019
1:  10016
2:  10071
3:  10044
4:  9775
5:  10042
6:  10033

这很好,尽管远非完美。事实上,我们的一个假设是 在这个实现中很可能是false:我们使用一个PRNG,因此,结果 的值依赖于上一个结果。

也就是说,使用一个真正随机的数字来源,输出也应该是 真正随机的。这个算法在任何情况下都终止。

但这是有代价的:我们需要为一个rand7()调用7次rand5() 调用。

其他回答

只要没有剩下7种可能性,就再画一个随机数,将可能性数乘以5。在Perl中:

$num = 0;
$possibilities = 1;

sub rand7
{
  while( $possibilities < 7 )
  {
    $num = $num * 5 + int(rand(5));
    $possibilities *= 5;
  }
  my $result = $num % 7;
  $num = int( $num / 7 );
  $possibilities /= 7;
  return $result;
}

下面使用随机数发生器在{1,2,3,4,5,6,7}上产生均匀分布,在{1,2,3,4,5}上产生均匀分布。代码很混乱,但逻辑很清晰。

public static int random_7(Random rg) {
    int returnValue = 0;
    while (returnValue == 0) {
        for (int i = 1; i <= 3; i++) {
            returnValue = (returnValue << 1) + SimulateFairCoin(rg);
        }
    }
    return returnValue;
}

private static int SimulateFairCoin(Random rg) {
    while (true) {
        int flipOne = random_5_mod_2(rg);
        int flipTwo = random_5_mod_2(rg);

        if (flipOne == 0 && flipTwo == 1) {
            return 0;
        }
        else if (flipOne == 1 && flipTwo == 0) {
            return 1;
        }
    }
}

private static int random_5_mod_2(Random rg) {
    return random_5(rg) % 2;
}

private static int random_5(Random rg) {
    return rg.Next(5) + 1;
}    
rand7() = (rand5()+rand5()+rand5()+rand5()+rand5()+rand5()+rand5())%7+1

编辑:这并不奏效。误差约为千分之二(假设是完美的rand5)。桶得到:

value   Count  Error%
1       11158  -0.0035
2       11144  -0.0214
3       11144  -0.0214
4       11158  -0.0035
5       11172  +0.0144
6       11177  +0.0208
7       11172  +0.0144

通过转换到的和

n   Error%
10  +/- 1e-3,
12  +/- 1e-4,
14  +/- 1e-5,
16  +/- 1e-6,
...
28  +/- 3e-11

似乎每增加2就增加一个数量级

BTW:上面的误差表不是通过采样产生的,而是通过以下递归关系产生的:

P [x,n]是给定n次调用rand5,输出=x可能发生的次数。

  p[1,1] ... p[5,1] = 1
  p[6,1] ... p[7,1] = 0

  p[1,n] = p[7,n-1] + p[6,n-1] + p[5,n-1] + p[4,n-1] + p[3,n-1]
  p[2,n] = p[1,n-1] + p[7,n-1] + p[6,n-1] + p[5,n-1] + p[4,n-1]
  p[3,n] = p[2,n-1] + p[1,n-1] + p[7,n-1] + p[6,n-1] + p[5,n-1]
  p[4,n] = p[3,n-1] + p[2,n-1] + p[1,n-1] + p[7,n-1] + p[6,n-1]
  p[5,n] = p[4,n-1] + p[3,n-1] + p[2,n-1] + p[1,n-1] + p[7,n-1]
  p[6,n] = p[5,n-1] + p[4,n-1] + p[3,n-1] + p[2,n-1] + p[1,n-1]
  p[7,n] = p[6,n-1] + p[5,n-1] + p[4,n-1] + p[3,n-1] + p[2,n-1]

什么是简单的解决方案?(rand5() + rand5()) % 7 + 1 减少内存使用或在较慢的CPU上运行的有效解决方案是什么?是的,这是有效的,因为它只调用rand5()两次,空间复杂度为O(1)

考虑rand5()给出从1到5(包括)的随机数。 (1 + 1) % 7 + 1 = 3 (1 + 2) % 7 + 1 = 4 (1 + 3) % 7 + 1 = 5 (1 + 4) % 7 + 1 = 6 (1 + 5) % 7 + 1 = 7

(2 + 1) % 7 + 1 = 4 (2 + 2) % 7 + 1 = 5 (2 + 3) % 7 + 1 = 6 (2 + 4) % 7 + 1 = 7 (2 + 5) % 7 + 1 = 1 .

(5 + 1) % 7 + 1 = 7 (5 + 2) % 7 + 1 = 1 (5 + 3) % 7 + 1 = 2 (5 + 4) % 7 + 1 = 3 (5 + 5) % 7 + 1 = 4 .

等等

为什么不除以5再乘以7,然后四舍五入呢?(当然,你必须使用浮点数no.)

它比其他解决方案更简单、更可靠(真的吗?)例如,在Python中:

def ranndomNo7():
    import random
    rand5 = random.randint(4)    # Produces range: [0, 4]
    rand7 = int(rand5 / 5 * 7)   # /5, *7, +0.5 and floor()
    return rand7

这不是很容易吗?