给定一个函数,它产生的是1到5之间的随机整数,写一个函数,它产生的是1到7之间的随机整数。
当前回答
这类似于@RobMcAfee,除了我使用魔术数字而不是2维数组。
int rand7() {
int m = 1203068;
int r = (m >> (rand5() - 1) * 5 + rand5() - 1) & 7;
return (r > 0) ? r : rand7();
}
其他回答
与Martin的答案相似,但却很少抛弃熵:
int rand7(void) {
static int m = 1;
static int r = 0;
for (;;) {
while (m <= INT_MAX / 5) {
r = r + m * (rand5() - 1);
m = m * 5;
}
int q = m / 7;
if (r < q * 7) {
int i = r % 7;
r = r / 7;
m = q;
return i + 1;
}
r = r - q * 7;
m = m - q * 7;
}
}
在这里,我们在0到m-1之间建立一个随机值,并尝试通过添加尽可能多的状态来最大化m,而不会溢出(INT_MAX是C中适合int的最大值,或者您可以将其替换为任何在您的语言和体系结构中有意义的大值)。
然后;如果r落在能被7整除的最大可能区间内,那么它包含一个可行的结果,我们可以将这个区间除以7,取余数作为我们的结果,并将剩余的值返回到熵池。否则r在另一个不均匀的区间内我们就必须抛弃这个不拟合区间重新启动熵池。
与这里的流行答案相比,它调用rand5()的频率平均减少了一半。
为了提高性能,可以将除法分解为琐碎的比特旋转和lut。
我觉得你们都想多了。难道这个简单的解决方案行不通吗?
int rand7(void)
{
static int startpos = 0;
startpos = (startpos+5) % (5*7);
return (((startpos + rand5()-1)%7)+1);
}
亚当·罗森菲尔德正确答案的前提是:
X = 5^n(在他的例子中,n=2) 操作n个rand5次调用以获得范围[1,x]内的数字y Z = ((int)(x / 7)) * 7 如果y > z,再试一次。否则返回y % 7 + 1
当n = 2时,有4种可能:y ={22,23,24,25}。如果你使用n = 6,你只有1个扔掉的东西:y ={15625}。
5^6 is 15625 7 times 2232 is 15624
你又给rand5个电话。但是,您获得一个丢弃值(或无限循环)的机会要低得多。如果有办法让y没有可能的一次性值,我还没有找到它。
Here is a solution that tries to minimize the number of calls to rand5() while keeping the implementation simple and efficient; in particular, it does not require arbitrary large integers unlike Adam Rosenfield’s second answer. It exploits the fact that 23/19 = 1.21052... is a good rational approximation to log(7)/log(5) = 1.20906..., thus we can generate 19 random elements of {1,...,7} out of 23 random elements of {1,...,5} by rejection sampling with only a small rejection probability. On average, the algorithm below takes about 1.266 calls to rand5() for each call to rand7(). If the distribution of rand5() is uniform, so is rand7().
uint_fast64_t pool;
int capacity = 0;
void new_batch (void)
{
uint_fast64_t r;
int i;
do {
r = 0;
for (i = 0; i < 23; i++)
r = 5 * r + (rand5() - 1);
} while (r >= 11398895185373143ULL); /* 7**19, a bit less than 5**23 */
pool = r;
capacity = 19;
}
int rand7 (void)
{
int r;
if (capacity == 0)
new_batch();
r = pool % 7;
pool /= 7;
capacity--;
return r + 1;
}
就是这样,均匀分布,零rand5调用。
def rand7:
seed += 1
if seed >= 7:
seed = 0
yield seed
需要事先播种。