给定一个函数,它产生的是1到5之间的随机整数,写一个函数,它产生的是1到7之间的随机整数。


当前回答

这类似于@RobMcAfee,除了我使用魔术数字而不是2维数组。

int rand7() {
    int m = 1203068;
    int r = (m >> (rand5() - 1) * 5 + rand5() - 1) & 7;

    return (r > 0) ? r : rand7();
}

其他回答

我想到了一个解决这个问题的有趣方法,想和大家分享一下。

function rand7() {

    var returnVal = 4;

    for (var n=0; n<3; n++) {
        var rand = rand5();

        if (rand==1||rand==2){
            returnVal+=1;
        }
        else if (rand==3||rand==4) {
            returnVal-=1;
        }
    }

    return returnVal;
}

我构建了一个测试函数,循环rand7() 10,000次,将所有返回值相加,然后除以10,000。如果rand7()工作正常,我们计算的平均值应该是4 -例如,(1+2+3+4+5+6+7 / 7)= 4。在做了多次测试后,平均值确实是4:)

在php中

function rand1to7() {
    do {
        $output_value = 0;
        for ($i = 0; $i < 28; $i++) {
            $output_value += rand1to5();
        }
    while ($output_value != 140);
    $output_value -= 12;
    return floor($output_value / 16);
}

循环生成16到127之间的随机数,除以16生成1到7.9375之间的浮点数,然后舍入得到1到7之间的整数。如果我没记错的话,得到7个结果中的任何一个的概率都是16/112。

这里有很多解决方案没有产生均匀分布,许多评论指出了这一点,但这个问题并没有把它作为一个要求。最简单的解决方案是:

int rand_7() { return rand_5(); }

1 - 5范围内的随机整数显然在1 - 7范围内。从技术上讲,最简单的解决方法是返回一个常数,但那太琐碎了。

然而,我认为rand_5函数的存在是一个转移注意力的问题。假设问题是“生成一个均匀分布的伪随机数生成器,输出范围为1 - 7”。这是一个简单的问题(技术上不简单,但已经解决了,所以您可以查阅它)。

另一方面,如果问题被解释为你实际上有一个真正的随机数生成器,用于范围为1 - 5的整数(而不是伪随机),那么解决方案是:

1) examine the rand_5 function
2) understand how it works
3) profit

这个解决方案受到了Rob McAfee的启发。 然而,它不需要循环,结果是一个均匀分布:

// Returns 1-5
var rnd5 = function(){
   return parseInt(Math.random() * 5, 10) + 1;
}
// Helper
var lastEdge = 0;
// Returns 1-7
var rnd7 = function () {
  var map = [
     [ 1, 2, 3, 4, 5 ],
     [ 6, 7, 1, 2, 3 ],
     [ 4, 5, 6, 7, 1 ],
     [ 2, 3, 4, 5, 6 ],
     [ 7, 0, 0, 0, 0 ]
  ];
  var result = map[rnd5() - 1][rnd5() - 1];
  if (result > 0) {
    return result;
  }
  lastEdge++;
  if (lastEdge > 7 ) {
    lastEdge = 1;
  }
  return lastEdge;
};

// Test the a uniform distribution
results = {}; for(i=0; i < 700000;i++) { var rand = rnd7(); results[rand] = results[rand] ? results[rand] + 1 : 1;} 
console.log(results)

结果:[1:99560,2:99932,3:100355,4:100262,5:99603,6:100062,7:100226]

js小提琴

这个解决方案不浪费任何熵,并给出了范围内第一个可用的真正随机数。随着每一次迭代,得不到答案的概率可证明地降低了。在N次迭代中得到答案的概率是0到max (5^N)之间的随机数小于该范围内7的最大倍数(max-max%7)的概率。必须迭代至少两次。但这对所有解都是成立的。

int random7() {
  range = 1;
  remainder = 0;

  while (1) {
    remainder = remainder * 5 + random5() - 1;
    range = range * 5;

    limit = range - (range % 7);
    if (remainder < limit) return (remainder % 7) + 1;

    remainder = remainder % 7;
    range = range % 7;
  }
}

数值上等价于:

r5=5;
num=random5()-1;
while (1) {
   num=num*5+random5()-1;
   r5=r5*5;
   r7=r5-r5%7;
   if (num<r7) return num%7+1;
}

第一个代码以模形式计算。第二个代码只是简单的数学。或者我在某个地方犯了错误。: -)