给定一个函数,它产生的是1到5之间的随机整数,写一个函数,它产生的是1到7之间的随机整数。
当前回答
为什么这行不通?除了对rand5()的额外调用之外?
i = rand5() + rand5() + (rand5() - 1) //Random number between 1 and 14
i = i % 7 + 1;
其他回答
与Martin的答案相似,但却很少抛弃熵:
int rand7(void) {
static int m = 1;
static int r = 0;
for (;;) {
while (m <= INT_MAX / 5) {
r = r + m * (rand5() - 1);
m = m * 5;
}
int q = m / 7;
if (r < q * 7) {
int i = r % 7;
r = r / 7;
m = q;
return i + 1;
}
r = r - q * 7;
m = m - q * 7;
}
}
在这里,我们在0到m-1之间建立一个随机值,并尝试通过添加尽可能多的状态来最大化m,而不会溢出(INT_MAX是C中适合int的最大值,或者您可以将其替换为任何在您的语言和体系结构中有意义的大值)。
然后;如果r落在能被7整除的最大可能区间内,那么它包含一个可行的结果,我们可以将这个区间除以7,取余数作为我们的结果,并将剩余的值返回到熵池。否则r在另一个不均匀的区间内我们就必须抛弃这个不拟合区间重新启动熵池。
与这里的流行答案相比,它调用rand5()的频率平均减少了一半。
为了提高性能,可以将除法分解为琐碎的比特旋转和lut。
int randbit( void )
{
while( 1 )
{
int r = rand5();
if( r <= 4 ) return(r & 1);
}
}
int randint( int nbits )
{
int result = 0;
while( nbits-- )
{
result = (result<<1) | randbit();
}
return( result );
}
int rand7( void )
{
while( 1 )
{
int r = randint( 3 ) + 1;
if( r <= 7 ) return( r );
}
}
int ans = 0;
while (ans == 0)
{
for (int i=0; i<3; i++)
{
while ((r = rand5()) == 3){};
ans += (r < 3) >> i
}
}
产生近似均匀分布的常数时间解。诀窍是625恰好能被7整除当你增加到这个范围时,你可以得到均匀的分布。
编辑:我的错,我算错了,但我不会把它拉下来,以防有人觉得它有用/有趣。毕竟它确实有效……:)
int rand5()
{
return (rand() % 5) + 1;
}
int rand25()
{
return (5 * (rand5() - 1) + rand5());
}
int rand625()
{
return (25 * (rand25() - 1) + rand25());
}
int rand7()
{
return ((625 * (rand625() - 1) + rand625()) - 1) % 7 + 1;
}
function Rand7
put 200 into x
repeat while x > 118
put ((random(5)-1) * 25) + ((random(5)-1) * 5) + (random(5)-1) into x
end repeat
return (x mod 7) + 1
end Rand7
3次调用Rand5,平均125次中只重复6次。
把它想象成一个5x5x5的3D数组,一遍又一遍地填满1到7,还有6个空格。重新滚动空白。rand5调用在该数组中创建一个以5为基数的三位索引。
4D或更高的n维数组的重复次数会更少,但这意味着对rand5函数的更多调用将成为标准。你会在更高维度上得到递减的效率回报。在我看来,三个似乎是一个很好的折衷方案,但我还没有对它们进行测试。它是特定于rand5实现的。