给定一个函数,它产生的是1到5之间的随机整数,写一个函数,它产生的是1到7之间的随机整数。
当前回答
为什么这行不通?除了对rand5()的额外调用之外?
i = rand5() + rand5() + (rand5() - 1) //Random number between 1 and 14
i = i % 7 + 1;
其他回答
下面是一个利用c++ 11特性的答案
#include <functional>
#include <iostream>
#include <ostream>
#include <random>
int main()
{
std::random_device rd;
unsigned long seed = rd();
std::cout << "seed = " << seed << std::endl;
std::mt19937 engine(seed);
std::uniform_int_distribution<> dist(1, 5);
auto rand5 = std::bind(dist, engine);
const int n = 20;
for (int i = 0; i != n; ++i)
{
std::cout << rand5() << " ";
}
std::cout << std::endl;
// Use a lambda expression to define rand7
auto rand7 = [&rand5]()->int
{
for (int result = 0; ; result = 0)
{
// Take advantage of the fact that
// 5**6 = 15625 = 15624 + 1 = 7 * (2232) + 1.
// So we only have to discard one out of every 15625 numbers generated.
// Generate a 6-digit number in base 5
for (int i = 0; i != 6; ++i)
{
result = 5 * result + (rand5() - 1);
}
// result is in the range [0, 15625)
if (result == 15625 - 1)
{
// Discard this number
continue;
}
// We now know that result is in the range [0, 15624), a range that can
// be divided evenly into 7 buckets guaranteeing uniformity
result /= 2232;
return 1 + result;
}
};
for (int i = 0; i != n; ++i)
{
std::cout << rand7() << " ";
}
std::cout << std::endl;
return 0;
}
rand7() = (rand5()+rand5()+rand5()+rand5()+rand5()+rand5()+rand5())%7+1
编辑:这并不奏效。误差约为千分之二(假设是完美的rand5)。桶得到:
value Count Error%
1 11158 -0.0035
2 11144 -0.0214
3 11144 -0.0214
4 11158 -0.0035
5 11172 +0.0144
6 11177 +0.0208
7 11172 +0.0144
通过转换到的和
n Error%
10 +/- 1e-3,
12 +/- 1e-4,
14 +/- 1e-5,
16 +/- 1e-6,
...
28 +/- 3e-11
似乎每增加2就增加一个数量级
BTW:上面的误差表不是通过采样产生的,而是通过以下递归关系产生的:
P [x,n]是给定n次调用rand5,输出=x可能发生的次数。
p[1,1] ... p[5,1] = 1
p[6,1] ... p[7,1] = 0
p[1,n] = p[7,n-1] + p[6,n-1] + p[5,n-1] + p[4,n-1] + p[3,n-1]
p[2,n] = p[1,n-1] + p[7,n-1] + p[6,n-1] + p[5,n-1] + p[4,n-1]
p[3,n] = p[2,n-1] + p[1,n-1] + p[7,n-1] + p[6,n-1] + p[5,n-1]
p[4,n] = p[3,n-1] + p[2,n-1] + p[1,n-1] + p[7,n-1] + p[6,n-1]
p[5,n] = p[4,n-1] + p[3,n-1] + p[2,n-1] + p[1,n-1] + p[7,n-1]
p[6,n] = p[5,n-1] + p[4,n-1] + p[3,n-1] + p[2,n-1] + p[1,n-1]
p[7,n] = p[6,n-1] + p[5,n-1] + p[4,n-1] + p[3,n-1] + p[2,n-1]
int getOneToSeven(){
int added = 0;
for(int i = 1; i<=7; i++){
added += getOneToFive();
}
return (added)%7+1;
}
我知道它已经被回答了,但这似乎是可以工作的,但我不能告诉你它是否有偏见。我的“测试”表明,这至少是合理的。
也许亚当·罗森菲尔德会好心地评论一下?
我(天真?)的想法是这样的:
积累rand5,直到有足够的随机位形成rand7。这最多需要2兰特。为了得到rand7,我使用累计值mod 7。
为了避免累加器溢出,由于累加器是mod 7,那么我取累加器的mod 7:
(5a + rand5) % 7 = (k*7 + (5a%7) + rand5) % 7 = ( (5a%7) + rand5) % 7
rand7()函数如下:
(我让rand5的范围是0-4,rand7也是0-6。)
int rand7(){
static int a=0;
static int e=0;
int r;
a = a * 5 + rand5();
e = e + 5; // added 5/7ths of a rand7 number
if ( e<7 ){
a = a * 5 + rand5();
e = e + 5; // another 5/7ths
}
r = a % 7;
e = e - 7; // removed a rand7 number
a = a % 7;
return r;
}
编辑:增加了1亿次试验的结果。
'Real' rand函数mod 5或7
rand5 : 平均=1.999802 0:20003944 1:19999889 2:20003690 3:19996938 4:19995539 Rand7 : 平均=3.000111 0:14282851 1:14282879 2:14284554 3:14288546 4:14292388 5:14288736 6:14280046
我的边缘7
平均数看起来不错,数字分布也不错。
Randt : 平均=3.000080 0:14288793 1:14280135 2:14287848 3:14285277 4:14286341 5:14278663 6:14292943
因为1/7是一个以5为底的无限小数,所以没有(完全正确的)解可以在常数时间内运行。一个简单的解决方案是使用拒绝抽样,例如:
int i;
do
{
i = 5 * (rand5() - 1) + rand5(); // i is now uniformly random between 1 and 25
} while(i > 21);
// i is now uniformly random between 1 and 21
return i % 7 + 1; // result is now uniformly random between 1 and 7
这个循环的预期运行时间为25/21 = 1.19次迭代,但是永远循环的概率非常小。
推荐文章
- 如何计算圆周长上的一点?
- 从整数流中找到运行中位数
- 在日历应用程序中建模重复事件的最佳方法是什么?
- 在任何情况下,您更喜欢高大o时间复杂度算法而不是低大o时间复杂度算法吗?
- 如何在c++中生成一个随机数?
- 如何使用JavaScript比较软件版本号?数量(只)
- 跳跃表vs.二叉搜索树
- 如何使四舍五入百分比加起来为100%
- 是否有可能得到一个函数的所有参数作为单一对象内的函数?
- 随机行选择在熊猫数据框架
- LL和LR解析之间的区别是什么?
- log(n!) = Θ(n·log(n))?
- C语言中位反转的高效算法(从MSB->LSB到LSB->MSB)
- 递归还是迭代?
- 从文件中读取随机行有什么简单的方法?